
Split Polynomials and the Sullivan
Conjecture

Tianqi Feng

Supervised by Diarmuid Crowley and Csaba Nagy (University of Glasgow)

A thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science (Mathematics and Statistics)

in the

Faculty of Science
School of Mathematics and Statistics

The University of Melbourne

January 2025

This thesis has been revised in response to examiner feedback following its initial submission.





Acknowledgements
First and foremost, I sincerely thank my supervisor, Diarmuid, for his guidance and support throughout
the course of this research project. His advice, feedback, and encouragement have been essential to
my progress, and without which this thesis would not have been possible. I am incredibly grateful for
the time and effort he has dedicated to helping me.

I would also like to thank everyone in GTSG: Jayden, John, Anthony, and Matt, for being present
at all our meetings, and giving me the motivation to progress and learn. And also friends Kwan,
Brandon, and everyone in G90, whom have been the highlight of my master’s degree, and made it all
the more enjoyable. I would like to give a special thanks to Yanchao for pushing me to take the path
on which I am now, and for being a most supportive friend.

Finally, I would like to thank my parents and my family for being there throughout this journey,
even if I may be undeserving of your love, support, and encouragement.

iii





Contents

Acknowledgements iii

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3
2.1 Principal bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Turning polynomial maps into maps of spheres . . . . . . . . . . . . . . . . . . . . 5
2.3 Fibrewise degree-d maps between vector bundles . . . . . . . . . . . . . . . . . . . 7

2.3.1 New fibrewise degree-d maps from old . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Isomorphisms and homotopies of fibrewise degree-d maps . . . . . . . . . . 9
2.3.3 Trivialising either the source or target . . . . . . . . . . . . . . . . . . . . . 10

2.4 A fact about tensor powers of line bundles . . . . . . . . . . . . . . . . . . . . . . . 11

3 Split polynomials and the A-space 13
3.1 Split polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The structure of split polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 When are two split polynomials equal? . . . . . . . . . . . . . . . . . . . . 15
3.2.2 When do two split polynomials commute? . . . . . . . . . . . . . . . . . . . 16
3.2.3 Unitary actions on the split polynomials . . . . . . . . . . . . . . . . . . . . 16

3.3 The A-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Decomposition by degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Models for the A-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.1 The case of d arbitrary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 The case of d D pk, p prime. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 The case of d D p, p prime . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 The case of d D p2, p prime . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.5 The case of d is a product of distinct primes . . . . . . . . . . . . . . . . . . 22
3.4.6 The case of d D pq, p, q distinct primes. . . . . . . . . . . . . . . . . . . . 23

3.5 Stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 The classifying spaces .QS0=U /d and U nnQS0
d

25
4.1 Constructing the universal bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 The canonical vector bundle over U.n/nnMap.S2n�1; S2n�1/d . . . . . . . . 26
4.1.2 Universal fibrewise degree-d map over U.n/nnMap.S2n�1; S2n�1/d . . . . . 26

4.2 The space U.n/nnMap.S2n�1; S2n�1/d as a classifying space . . . . . . . . . . . . . 28
4.3 A stable viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



vi Contents

5 The A-space as a classifying space 35
5.1 The A-space and the homotopy quotient U.nC 1/nnSP.n/d . . . . . . . . . . . . . . 36
5.2 Vector bundles over the A-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 The bundle V� over the maximal anti-diagonal . . . . . . . . . . . . . . . . 37
5.2.2 The bundle V� over the atomic A-space . . . . . . . . . . . . . . . . . . . . 44

6 The cohomology of the A-space 45
6.1 The case of d D p, p prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 The case of d D p2, p prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 The stable cohomology of Ap2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 The case of d D pq, p, q distinct primes . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 The stable cohomology of Apq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Some additional proofs 69

References 73



1 Introduction

1.1 Background and motivation
The motivation for this thesis begins with complete intersections. First, we consider a single positive
integer d , which will be the degree of a homogeneous polynomial f 2 CŒX0; : : : ; XnC1�. Then the
vanishing locus

Xn.f; d/´ f Œz� 2 CP nC1
j f .z/ D 0 g

is an algebraic variety. When 0 is a regular value of f , it is a smooth complex variety embedded in
CP nC1 of complex codimension 1, called a hypersurface.
Example 1.1.1. When n D 1, X1.f; d/ is diffeomorphic to the oriented genus g surface Fg � CP 2

for some g.
Now consider a finite multiset of positive integers d D fd1; : : : ; dkg, and let f1; : : : ; fk 2

CŒX0; : : : ; XnCk� be homogeneous polynomials of degrees d1; : : : ; dk respectively. If 0 is a reg-
ular value of each fi and the vanishing locus

Xn.f1; : : : ; fk; d /´ f Œz� 2 CP nCk
j fi.z/ D 0 for all i D 1; : : : ; k g

D XnCk�1.f1; d1/ \ � � � \XnCk�1.fk; dk/

is the transverse intersection of XnCk�1.fi ; di/, i D 1; : : : ; k, then Xn.f1; : : : ; fk; d / is a smooth
complex variety embedded in CP nCk of complex codimension k. This is what we call a complete
intersection. The diffeomorphism type of Xn.f1; : : : ; fk; d / depends only on the multidegree d , a
result often attributed to Thom, but is elaborated upon in [CN23, §2.1], and so we write

Xn.d/´ Xn.f1; : : : ; fk/

ambiguously for its diffeomorphism type. [LW82, Theorem 8.2] provides a sort of converse to this
statement.

A key point of interest in the study of complete intersections is its connection to the Sullivan
Conjecture. A version of the conjecture due to Crowley and Nagy [CN23], which we state for
exposition without defining all the relevant terms, is as follows.
Conjecture 1.1.2 (The Sullivan Conjecture). Denote by d D d1 � � � dk the total degree of Xn.d/,
and let �.Xn.d// be its Euler characteristic. Then if n > 3, two complete intersections Xn.d/ and
Xn.d 0/ are diffeomorphic if

1. d D d 0;

2. �.Xn.d// D �.Xn.d 0//; and

3. The stable normal bundles of Xn.d/ and Xn.d 0/ are isomorphic.

1



2 1 Introduction

We briefly call the three objects listed above the Sullivan data of a complete intersection Xn.d/.
For a fixed value of n, the Sullivan data depends only on certain polynomial functions of the

individual degrees d1; : : : ; dn. A consequence of this conjecture is therefore a large supply of examples
of complex manifolds which do not have the same complex structure, but which have the same Sullivan
data by coincidence (a pigeonhole argument can be made for example), and therefore have the same
underlying smooth structure.

Another K-theoretic formulation of the conjecture, also due to Crowley and Nagy [CN23] is as
follows.
Conjecture 1.1.3 (The Sullivan Conjecture, K-theoretic version). For n > 3, two complete inter-
sections Xn.d/ and Xn.d 0/ are diffeomorphic if their normal invariants �.d/ and �.d 0/ are equal.

We speak more about normal invariants at the beginning of Chapter 5. At a basic level, normal
invariants are constructed out of the data of fibrewise polynomial maps between line bundles over
a space. In order to investigate these normal invariants, we develop the theory of split polynomials
a model space in which we are able to observe the behaviour of the fibrewise polynomial maps in
question.

1.2 Outline of results
We now provide an outline of the structure of the thesis along with an overview of what we have
achieved.

The main object of study of this thesis is a topological monoid called the split polynomials, and our
results are concerning the structure of the split polynomial space, and its associated quotient under a
unitary action, called the A-space.

In Chapter 2, we prove some auxiliary results which are used in later chapters. In the second half
of the chapter, we define the theory of fibrewise degree-d maps between vector bundles following the
work of Brumfiel and Madsen [BM76].

In Chapter 3, we give the definition of the split polynomial space and the A-space. Our main
results are concerning the structure of the A-space, such as Theorem 3.4.6 (Relations in A.n/p2) and
Theorem 3.4.12 (Relations in A.n/pq). Based on these results, we describe a certain stratification of
the A-space depending on the commutativity of atomic split polynomial maps in certain factorisations
of a general element of the split polynomial space.

In Chapter 4, we construct a model for the classifying space .QS0=U /d for fibrewise degree-d
maps of complex vector bundles as a homotopy orbit space U nnQS0

d
. We give two different proofs:

one for Theorem 4.2.2 (A classifying space for F ts
d;n

) in the unstable context, and one for Theorem 4.3.3
(A classifying space for Fd ) in the stable context.

In Chapter 5, we prove a result that the homotopy quotient U.nC1/nnSP.n/d is homotopy equivalent
to A.n/d (Theorem 5.1.1), establishing the A-space as a subspace of the classifying space U nnQS0

d
.

In the second half of the chapter, we compute the isomorphism type of the canonical vector bundle
over the A-space restricted to the maximal anti-diagonal. This is Theorem 5.2.3. A corollary of this
is the vector bundle over the atomic A-space, stated as Theorem 5.2.8.

In Chapter 6, we compute the cohomology of the A-space in various degrees, including when the
degree is: the square of a prime, and the product of two distinct primes.



2 Preliminaries

In this thesis, we assume that the reader is familiar with concepts of algebraic and differential topology.
In this chapter, we state and prove a some results that will be used in later chapters. We also state the
definition of the notion of a fibrewise degree-d map, which were defined by Brumfiel and Madsen
[BM76] and later studied by Crowley and Nagy [CN23] in their work on the Sullivan Conjecture.

2.1 Principal bundles

We begin with a result about the induced bundle of a restriction of a principal bundles. To establish
the context, we also provide definitions of principal bundles, which we take from [Hus94].

Definition 2.1.1 (G-space with free action). [Hus94, Section 4.2, Definition 2.1] Let G be a topolog-
ical group. A (right) G-space is a space P with a right G-action. We say that G acts freely on P if
pg D p implies g D 1G , i.e., only the identity of G fixes any point of P . Let P � be the subspace
of all .p; pg/ 2 P � P , where p 2 P and g 2 G. There is a function � W P � ! G, called the
translation function, such that p �.p; p0/ D p0 for all .p; p0/ 2 P �.

Remark 2.1.2. Of course, there is an analogous version for a left G-action, called a left G-space.

Definition 2.1.3 (G-bundle). [Hus94, Section 4.1, Definition 1.6] Let G be a topological group acting
on a space P on the right. A G-bundle is a map p W P ! X such that there exists a homeomorphism
f W P=G ! X such that the following diagram commutes:

P P

P=G X:

 

   

 

!

 

! p

 

!
f

Definition 2.1.4 (Principal G-bundle). [Hus94, Section 4.2, Definition 2.2] A G-space P with free
G-action is called principal if the translation function � W P � ! G is continuous. A principal
G-bundle is a G-bundle p W P ! X , where P is a principal G-space.

A principal G-bundle is then a fibre bundle with fibre G.

Remark 2.1.5. Usually, we also assume that a principal G-bundle admits local trivialisations. That
is, there exists an open cover fU˛g of X such that restricted to each open set U˛, there exists a G-
equivariant homeomorphism h˛ W p�1.U˛/ ! U˛ � G taking each fibre p�1.x/ to fxg � G by a

3



4 2 Preliminaries

continuous group isomorphism:

U˛ �G p�1.U˛/ P

U˛ X:

h˛

Š

 

!
prU˛

 - !

 

! p

y  

! p

 - !

[Hus94] calls such bundles numerable.

The following definition and proposition will be used in the context of constructing homotopy orbit
spaces in the later chapters.

Definition 2.1.6 (Balanced product). [Hus94, Section 4.5] Let P be a right G-space and F be a left G-
space. Then the product P �F can be made into a right G-space via the action .p; f /g D .pg; g�1f /.
The quotient .P � F /=G is denoted by P �G F , and is called the balanced product of P and F .

Proposition 2.1.1 (Constructing a fibre bundle from a principal G-bundle). [Hus94, Section 4.5,
Proposition 5.3] Let p W P ! X be a principal G-bundle and F be a left G-space. The composition
P �F

prP
! P

p
�! X factors through the balanced product as P �F ! P �G F ! X , and we denote

the resulting map P �G F ! X by p �G F . The map p �G F is a fibre bundle with fibre F .

Definition 2.1.7 (Restriction of a principal bundle). [Hus94, Section 6.2, Definition 2.1] Let P ! X

be a principal G-bundle. Let Q! X be a principal H -bundle, where H is a closed subgroup of G.
Suppose there exists an H -equivariant map f W Q! f .Q/ � P which is a homeomorphism onto
the closed subset f .Q/. Then the bundle Q! X is called a restriction of P ! X to H .

Here is the main result of this section.

Lemma 2.1.8 (Induced bundle). Let p W P ! X be a principal G-bundle and q W Q ! X be a
principal H -bundle where i W Q ,! P is a closed subset. Then there is a commutative diagram

H G

Q P

X X

 - !

 
-

!

 
-

!

 - !
i

 !q  !p

 

   

and the induced principal G-bundle q0 D q �H G W Q �H G ! X is isomorphic to p.

Proof. Consider the map

f W Q �
H

G �! P

Œq; g� 7�! i.q/g:
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There is a commutative diagram

H G G=H

Q P P=H

X X X;

 - !

 
-

!

 �
 
-

!  
-

!

 - !
i

 !q

 �

 !p  !p=H

 

   

 

 

 

 

 

!

s

where the section s W X ! P=H is given by x 7! i.Qx/. The action of G=H is transitive on each
fibre, so f is surjective. The map f is clearly injective because the action of G on P is free, and
i is injective. The inverse map can be constructed as follows: For each x 2 X , we select a point
q 2 Qx � Px. Then on the fibre over x, we map via

f �1
x W Px �! Qx �

H
G; p 7�! Œq; �.q; p/�:

This map is independent of the choice of q, for if we pick another q0 2 Qx, we have q0 D q �.q; q0/

and p D q �.q; p/ D q0 �.q; q0/�1 �.q; p/ so that

Œq; �.q; p/� D Œq �.q; q0/; �.q; q0/�1�.q; p/� D Œq0; �.q0; p/�:

So f is a homeomorphism.

2.2 Turning polynomial maps into maps of spheres
We now exhibit a relationship between a certain class of “well-behaved” maps Cn ! Cn and
maps of spheres S2n�1 ! S2n�1. The main motivation for our definitions will be the desire to
turn a non-constant polynomial map Cn ! Cn whose preimage of f0g is f0g into an element of
Map.S2n�1; S2n�1/, so this should be the prototypical example to bear in mind when reading through
this section.

Let bCn ´ Cn[f1g denote the one-point compactification of Cn. The space bCn is homeomorphic
to the (unreduced) suspension of S2n�1, and therefore can be written as a quotient of the cylinder
S2n�1 � I . This quotient is realised by the “polar coordinates” map:

q W S2n�1 � I �! bCn

.�; r/ 7�! r�=.1 � r/;

where S2n�1 � Cn is the unit sphere, and the expression r�=.1 � r/ is interpreted appropriately as
giving the point at infinity when r D 1.
Definition 2.2.1. We define Map0;1.bCn; bCn/ to be the subspace of Map.bCn; bCn/ consisting of maps
f W bCn ! bCn satisfying:

1. The preimages f �1.0/ D f0g and f �1.1/ D f1g; and
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2. There exists a lift zf W S2n�1� I ! S2n�1� I of f such that the following diagram commutes:

S2n�1 � I S2n�1 � I

bCn bCn:

 

!
zf

 

!q

 

! q

 

!
f

Remark 2.2.2 (Uniqueness of extensions). We remark that a priori, condition 2 implies the existence
of a lift zf W S2n�1 � Int I ! S2n�1 � Int I . Then the lift in condition 2 exists if and only if zf
is uniformly continuous by compactness of S2n�1 � I , in which case its extension to S2n�1 � I is
unique.

On Map0;1.bCn; bCn/, there is a normalising map

N W Map0;1.bCn; bCn/ �! Map.S2n�1; S2n�1/

f 7�!
f jS2n�1f jS2n�1

 ;

and a suspension map

S W Map.S2n�1; S2n�1/ �! Map0;1.bCn; bCn/

f 7�! Sf ;

where
Sf W bCn �! bCn

z … f0;1g 7�! kzkf .z=kzk/:

Indeed, Map0;1.bCn; bCn/ and Map.S2n�1; S2n�1/ are both monoids under composition, but we remark
that only S is a monoid homomorphism.
Theorem 2.2.3. N and S are homotopy inverses.

Remark 2.2.4. Now consider the space Poly0.Cn; Cn/ of polynomial maps p W Cn ! Cn such
that p�1.0/ D f0g. So p is non-constant and can be extended to a map bC1 ! bC1. This defines
an inclusion Poly0.Cn; Cn/ ,! Map0;1.bCn; bCn/. What Theorem 2.2.3 provides us is a way to go
between the algebra of polynomial maps and the well-studied topological space of maps of spheres.

Proof of Theorem 2.2.3. Clearly NS D id. We construct a homotopy of SN to the identity.
Each f 2 Map0;1.bCn; bCn/ is the quotient of a lift zf W S2n�1� I ! S2n�1� I . This lift is unique

by Remark 2.2.2 Writing zf D � � r , where � W S2n�1 � I ! S2n�1 and r W S2n�1 � I ! I are the
two components of zf in the product S2n�1 � I , there is a well-defined “polar coordinates” map

P W Map0;1.bCn; bCn/ �! Map.S2n�1 � I; S2n�1/ �Map.S2n�1 � I; I /

f 7�! .�; r/:

Due to our definition of Map0;1.bCn; bCn/ condition 1 actually forces the image of P to be Map.S2n�1�

I; S2n�1/ �Map0;1.S2n�1 � I; I /, where Map0;1.S2n�1 � I; I / � Map.S2n�1 � I; I / denotes the
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subspace of maps g W S2n�1 � I ! I such that g�1.0/ D S2n�1 � f0g and g�1.1/ D S2n�1 � f1g.
Now, P W Map0;1.bCn; bCn/! Map.S2n�1�I; S2n�1/�Map0;1.S2n�1�I; I / is a homeomorphism.

The space Map0;1.S2n�1 � I; I / is contractible because I contractible: we can always homotope a
map g 2 Map0;1.S2n�1�I; I / to the projection prI W S2n�1�I ! I , which is certainly an element of
Map0;1.S2n�1 � I; I /. On the other hand, the space Map.S2n�1 � I; S2n�1/ is homeomorphic to the
free path space Map.S2n�1; S2n�1/I , which deformation retracts onto the subspace of constant maps
homeomorphic to Map.S2n�1; S2n�1/ by “compressing” each path  W I ! Map.S2n�1; S2n�1/ to
the constant map  j1=2 W f1=2g ! Map.S2n�1; S2n�1/. So we have a homotopy equivalence

Map.S2n�1
� I; S2n�1/ �Map0;1.S2n�1

� I; I / ' Map.S2n�1; S2n�1/;

which is realised as a deformation retraction onto the subspace Map.S2n�1�f1=2g; S2n�1/�fprI g Š
Map.S2n�1; S2n�1/. Denote this deformation retraction by rt .

Now observe the following factorisation of N through Map.S2n�1�I; S2n�1/�Map.S2n�1�I; I /:

Map0;1.bCn; bCn/ Map.S2n�1; S2n�1/

Map.S2n�1 � I; S2n�1/ �Map0;1.S2n�1 � I; I /:

 

!
N

 

!P

Š

 

!

r1

Going the other way, S is obtained via the factorisation

Map0;1.bCn; bCn/ Map.S2n�1; S2n�1/

Map.S2n�1 � I; S2n�1/ �Map0;1.S2n�1 � I; I /;

 

!S

 

!

P �1

Š
 

-

! i

where the inclusion i is by mapping Map.S2n�1; S2n�1/ to the image of the deformation retract
Map.S2n�1 � f1=2g; S2n�1/ � fprI g Š Map.S2n�1; S2n�1/. Thus, the deformation retraction rt

obtains us a homotopy of SN back to the identity.

2.3 Fibrewise degree-d maps between vector bundles
The theory of this section follows what Brumfiel and Madsen called f -maps in their work [BM76, §4].
We will instead work in the category of complex vector bundles, and so we will have a well-defined
notion of degree of maps between complex vector bundles with respect to their preferred orientation.
Definition 2.3.1 (Fibrewise degree-d map). Let En; F n ! X be complex vector bundles over a
connected space X of rank n, and let S.En/; S.F n/! X denote their sphere bundles. A fibrewise
degree-d map f W S.En/! S.F n/ is a fibre preserving map

S.En/ S.F n/

X

 

!
f

 

!

 
!
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which is of degree d on each fibre, i.e., fx W S.En/x ! S.F n/x has degree d for each x 2 X .

2.3.1 New fibrewise degree-d maps from old

The join of two spaces X and Y is the set of all formal convex combinations of points in X and Y

X � Y D f t1x C t2y j x 2 X; y 2 Y; t1 C t2 D 1; t1; t2 > 0 g;

and is topologised as a quotient of X � Y � I . Given two maps f W X ! Z and g W Y ! W , we
can define an induced map between the joins X � Y ! Z �W by

f � g W X � Y �! Z �W

t1x C t2y 7�! t1f .x/C t2g.y/:

Where S0 is the discrete two point space in R, its nth iterated join .S0/�n is consists of formal
convex combinations of 2n points in the axes of Rn. By radial projection outward from the origin, we
have a homeomorphism

S0
� � � � � S0„ ƒ‚ …
n times

Š Sn�1:

Hence, by associativity of the join, Sm�1 � Sn�1 Š SmCn�1.
Definition 2.3.2 (Direct sums). For two maps of spheres fi W S

m�1 ! Sm�1 with degree di , i D 0; 1,
the induced map on the join f0�f1 W S

mCn�1 ! SmCn�1 has degree d0d1. Repeating this construction
fibrewise, we can take the fibrewise join of fibrewise degree-di maps fi W S.Ei/! S.Fi/, i D 0; 1,
resulting in a fibrewise degree-d0d1 map f0 ˚ f1 W S.E0 ˚E1/! S.F0 ˚ F1/ between the direct
sums of the vector bundles, i.e.

.f0 ˚ f1/x ´ f0x � f1x W S.E0 ˚E1/x �! S.F0 ˚ F1/x

on each fibre over x 2 X . We have a commutative diagram

S.E1 ˚E2/ S.F1 ˚ F2/

X:

 

!
f1˚f2

 

!

 

!

Definition 2.3.3 (Pullbacks). Given a fibrewise degree-d map f W S.E/! S.F / between sphere
bundles S.E/; S.F / ! X , and a map g W Y ! X , we can form the pullback g�f W S.g�E/ !

S.g�F /, defined on each fibre by

.g�f /y ´ fg.y/ W S.g�E/y �! S.g�F /y
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for all y 2 Y . The pullback is again a fibrewise degree-d map. Hence, there is a commutative diagram

S.g�E/ S.g�F /

S.E/ S.F /

Y

X:

 

!
g�f

 

!

 

!

 

! 

!

 

!
f

 

!

 

! 

!g

2.3.2 Isomorphisms and homotopies of fibrewise degree-d maps

We begin by defining 3 operations that relate fibrewise degree-d maps: isomorphism, homotopy, and
stable isomorphism.
Definition 2.3.4 (Isomorphism of fibrewise degree-d maps). Let fi W S.En

i /! S.F n
i /, i D 0; 1,

be two fibrewise degree-d maps over the same base space X . An isomorphism between f0 and f1

is a U.n/-bundle isomorphisms g W En
0 ! En

1 and h W F n
0 ! F n

1 such that the following diagram
commutes:

S.En
0 / S.F n

0 /

S.En
1 / S.F n

1 /

X

X:

 
!

f0
 

!
g

Š

 

!

 

!
h

Š 

!

 

!
f1

 

!

 

! 

 

 

 

Definition 2.3.5 (Homotopy of fibrewise degree-d maps). Let fi W S.En
i / ! S.F n

i /, i D 0; 1,
be two fibrewise degree-d maps over the same base space X . A homotopy between f0 and f1 is a
fibrewise degree-d map f W S.En/! S.F n/, where En; F n ! X � I are oriented vector bundles
over X � I , such that the restrictions of f to X � f0g and X � f1g are equal to f0 and f1 respectively.
That is to say, we have the two pullback squares

.S.En
0 /

f0

�! S.F n
0 // .S.En/

f
�! S.F n// .S.En

0 /
f1

�! S.F n
0 //

X � f0g X � I X � f1g:

 - !

 

!

y

 

!

 -

!

y

 

!

 - !  -

!
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Definition 2.3.6 (Stable isomorphism of fibrewise degree-d maps). Let f W S.E/! S.F / be a
fibrewise degree-d map over a connected space X . For ˛ W G ! G 0 a U.n/-bundle isomorphism
of vector bundles G; G 0 ! X , we say that f and f ˚ ˛ W S.E ˚ G/ ! S.F ˚ G 0/ are stably
isomorphic.

We now define the following equivalence relations on the class of fibrewise degree-d maps over a
connected space X .
Definition 2.3.7 ((Unstable) homotopy equivalence). Let fi W S.En

i / ! S.F n
i /, i D 0; 1, be

two fibrewise degree-d maps over the same base space X . We say that f0 and f1 are (unstably)
homotopy equivalent, or homotopic, if they are related by the equivalence relation generated by the
two operations:

1. isomorphism (see Definition 2.3.4); and

2. homotopy (see Definition 2.3.5).

We denote this equivalence relation by'.

Remark 2.3.8. It can be shown that the definition of unstable homotopy equivalence of fibrewise
degree-d maps fi W S.En

i / ! S.F n
i /, i D 0; 1 is equivalent to asking for a single homotopy

f W S.En/! S.F n/, where En; F n ! X � I are oriented vector bundles over X � I , such that the
restrictions of f to X � f0g and X � f1g are isomorphic to f0 and f1 respectively. We will not need
to use this equivalence in this thesis.

Definition 2.3.9 (Stable homotopy equivalence). Let fi W S.En
i / ! S.F n

i /, i D 0; 1, be two
fibrewise degree-d maps over the same base space X . We say that f0 and f1 are stably homotopy
equivalent, or stably homotopic, if they are related by the equivalence relation generated by the three
operations:

1. isomorphism (see Definition 2.3.4);

2. homotopy (see Definition 2.3.5); and

3. stable isomorphism (see Definition 2.3.6).

We denote this equivalence relation by's.

Remark 2.3.10. It can be also be shown that the definition of stable homotopy equivalence of fibrewise
degree-d maps is equivalent to only allowing a single step of stabilisation. We will not need to use
this equivalence in this thesis.

2.3.3 Trivialising either the source or target

All vector bundles E ! X over compact Hausdorff X have an inverse bundle, i.e., another bundle
E? ! X such that E ˚ E? ! X is isomorphic to a trivial bundle by [Hat17, Proposition 1.3].
Thus, we can assume that either the source bundle or target bundle in a fibrewise degree-d map
f W S.E/! S.F / is trivial through one of the following operations:



2.4 A fact about tensor powers of line bundles 11

• Trivialising the source: We direct sum on the inverse of E:

.f W S.E/! S.F // 's .f ˚ idS.E?/ W S.E ˚E?/! S.F ˚E?//;

where the source bundle E ˚E? is now a trivial bundle.

• Trivialising the target: We direct sum on the inverse of F :

.f W S.E/! S.F // 's .f ˚ idS.F ?/ W S.E ˚ F ?/! S.F ˚ F ?//;

where the target bundle F ˚ F ? is now a trivial bundle.

Hence, every fibrewise degree-d map is stably isomorphic to either a fibrewise degree-d map of the
form

S.Cn/ S.F /

X;

 

!
f ts

 

!

 
!

or a fibrewise degree-d map of the form

S.E/ S.Cn/

X;
 

!
f tt

 

!

 

!

where Cn denotes the rank n trivial bundle over X .

2.4 A fact about tensor powers of line bundles
Here, we state and prove the following lemma, which we invoke later in Section 5.2.
Lemma 2.4.1. Let  ! X be a complex line bundle and let S./! X be the associated principal
S1-bundle. Then the map S./! S.˝d / is precisely the d -fold power map z 7! zd on each fibre.

Proof. To see this, we work on a local trivialisation. Over an open U � X where X is trivial, there
is an isomorphism  jU Š U � C. By definition of the tensor product on vector bundles, the map
 ! ˝d of vector bundles is given locally on U by the map U � C! U � C˝d , z 7! zd .





3 Split polynomials and the A-space
In this chapter, we define the notion of a split polynomial, which was introduced by C. Nagy in the
work for his PhD. The definition of a split polynomial aims to model the tautological fibrewise map
 ! ˝d for  a line bundle. We provide some exposition on the structure of the split polynomials
and the related A-space.
Notation 3.0.1. For a positive integer d , we denote the .2nC 1/-dimensional lens space by L2nC1

d
. It

is the lens space constructed as a quotient of S2nC1 by the diagonal Zd -action generated by the map

.z0; : : : ; zn/ 7�! .e2�i=d z0; : : : ; e2�i=d zn/:

3.1 Split polynomials
For this section, we let n denote a non-negative integer.
Definition 3.1.1 (Atomic split polynomial). Let CnC1 be equipped with the standard inner product.
An atomic split polynomial is a polynomial map of the form

.v; d/ W CnC1 �! CnC1

z 7�! hz; vid v C .z � hz; viv/

for v 2 S2nC1 and d 2 Z>0. We abuse notation and denote such an atomic split polynomial by the
pair .v; d/. When the degree can be inferred, we also take the liberty to elide d and simply denote an
atomic split polynomial by the vector v.

Here is a more concrete way of viewing the definition of an atomic split polynomial. First, extend
v to an ordered orthonormal basis ˇ.v/ D .v; b1; : : : ; bn/ of CnC1. Now, elements of CnC1 can be
expressed in coordinates with respect to this basis via�

z0 z1 � � � zn

�
ˇ.v/
´ z0v C z1b1 C � � � C znbn:

The action of .v; d/ is then the d th power map in 0th coordinate:

.v; d/ �
�
z0 z1 � � � zn

�
ˇ.v/
D

�
zd

0 z1 � � � zn

�
ˇ.v/

:

Definition 3.1.2 (Atomic split polynomial space). Consider the space of polynomial maps formed
by taking the atomic split polynomials and composing with unitary maps on both the domain and
codomain. We denote this space

SP.n/at
´ fA ı .v; d/ ı B j A; B 2 U.nC 1/; v 2 S2nC1; d 2 Z>0 g;

and call it the space of atomic split polynomials. We identify SP.n/at as a subspace of Map.CnC1; CnC1/,
and give it the subspace topology.

13
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Definition 3.1.3 (Split polynomial space). The (general) split polynomial space .SP.n/; ı/ is the
submonoid of Map.CnC1; CnC1/ under composition generated by the atomic split polynomials and
unitary maps. We usually denote .SP.n/; ı/ by just SP.n/, eliding the monoid operation. The split
polynomials SP.n/ have a tautological monoid action on CnC1.

Remark 3.1.4. We mention that the split polynomials may be defined in a coordinate-free way on
any (finite-dimensional) complex inner product space .V; h; i/, where now, we use the unitary group
U.V / of inner product preserving linear maps instead of U.nC 1/. For convenience, we will work
with CnC1 throughout this thesis, but corresponding results will hold in the more general setting.

Relations in SP.n/. The split polynomials satisfy the following relations: for A; B 2 U.nC 1/,
v; w 2 S2nC1, and d; e 2 Z>0, we have

1. A ı B D AB .

2. I D 1SP.n/, where I 2 U.nC 1/ is the identity matrix, and .v; 1/ D 1SP.n/.

3. .v; d/ ı .v; e/ D .v; de/.

4. .v; d/ ı .w; e/ D .w; e/ ı .v; d/ for all v ? w.

5. A ı .v; d/ D .Av; d/ ı A.

6. .�v; d/ D A�1�d

v ı .v; d/ for � 2 S1, where Ac
v 2 U.nC1/ for a constant c 2 S1 is the unitary

map given by Ac
v.x/ D chx; viv C .x � hx; viv/.

Thus, one can also define the split polynomial space as the abstract monoid .SPabs.n/; ı/ generated
by the symbols .v; d/ for every v 2 S2nC1, d 2 Z>0, and A for every A 2 U.nC 1/ subject to the
above 6 relations. By fiat, there is a surjective monoid homomorphism SPabs.n/ � SP.n/.
Conjecture 3.1.5 (Equivalence of SPabs.n/ and SP.n/). The surjective monoid homomorphism
SPabs.n/! SP.n/ is a monoid isomorphism.

For this thesis, we will assume this conjecture and identify the two constructions of SP.n/. In the
following chapters, we will prove specific cases of the above conjecture: Theorem 3.4.6 (Relations in
A.n/p2) and Theorem 3.4.12 (Relations in A.n/pq).

Given a word f D w1w2w3 � � �wk 2 SP.n/, we can use relation 5 above to bring all unitary maps
wi 2 U.nC 1/ to the left and atomic split polynomial maps to the right of the word. Combining
unitary maps with relation 1, we see that any f 2 SP.n/ admits a factorisation of the form

f D A ı .v1; d1/ ı � � � ı .vk; dk0/:

where A 2 U.nC 1/ and v1; : : : ; vk0 2 S2nC1, d1; : : : ; dk0 2 Z>0.
Definition 3.1.6 (Normal form). We call a factorisation of a split polynomial as shown above a normal
form of the split polynomial. Note that the normal form is not unique. For example, using relation 6
above, the equality .v; d/ D A�d�1

v ı .�v; d/ holds for all � 2 S1.
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3.2 The structure of split polynomials
In this section, we analyse some of the monoid structure of the split polynomials. In particular, we
would like to answer the following two questions:

1. When are two split polynomials equal?

2. When do two split polynomials commute?

We mainly focus on the atomic case for simplicity.
We will use the following key idea for our analysis: each element f 2 SP.n/ is a polynomial map

f W CnC1 ! CnC1, and so there is an associated Jacobian determinant map det Df W CnC1 ! C.
Given two split polynomials f; g 2 SP.n/, it is therefore a necessary condition that the functions
det Df; det Dg W CnC1 ! C are equal in order for f and g to be equal.

3.2.1 When are two split polynomials equal?
Proposition 3.2.1 (Equality of atomic split polynomials). An atomic split polynomial .v; d/ with
d ¤ 1 depends only on the equivalence class Œv� 2 L2nC1

d�1
, i.e., .v; d/ D .v0; d / if and only if

Œv� D Œv0� in L2nC1
d�1

.

Proof. We calculate the form of det Df when f D .v; d/, an atomic split polynomial. Let v 2 S2nC1

and d 2 Z>0. Then for z 2 CnC1, we obtain the formula

det D.v; d/z D d hz; vid�1:

Hence, given .v; d/; .w; e/ 2 SP.n/ with d ¤ 1, e ¤ 1, the equality .v; d/ D .w; e/ implies
d hz; vid�1 D ehz; wie�1 must hold for all z 2 CnC1.
Case 1. If v ¬ w, w admits an orthogonal decomposition

w D wk C w?; where wk 2 Cv; w? 2 .Cv/?
n f0g:

Therefore evaluating both determinants at z D w?, we find that

d hw?; vid�1
D 0 ¤ ehw?; wie�1

D ekw?k
2.e�1/:

So .v; d/ ¤ .w; e/.

Case 2. Now if v D �w for some � 2 S1, then

det D.v; d/z D d hz; vid�1
D �1�d d hz; wid�1:

Therefore evaluating both determinants at z D w yields

det D.v; d/w D d hw; vid�1
D �1�d d; det D.w; e/w D ehw; wie�1

D e:

Setting these equal forces d D e and �d�1 D 1. It is now easily seen that .�w; d/ D .w; d/ when
�d�1 D 1.
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3.2.2 When do two split polynomials commute?
To detect when two split polynomials commute using the Jacobian determinant, we recall the chain
rule of multivariable calculus:

det D.f ı g/z D .det Dfg.z//.det Dgz/:

Proposition 3.2.2 (Commutativity of atomic split polynomials). Two atomic split polynomials
.v; d/ and .w; e/ with d; e ¤ 1 commute if and only if one of the following holds:

1. v ? w; or

2. v D �w for some � 2 S1 with �.d�1/.e�1/ D 1.

Proof. Given .v; d/; .w; e/ 2 SP.n/ with d ¤ 1 and e ¤ 1, the equality .v; d/ ı .w; e/ D .w; e/ ı

.v; d/ implies
h.w; e/.z/; vid�1

hz; wie�1
D h.v; d/.z/; vie�1

hz; vid�1

must hold for all z 2 CnC1. Evaluating at z 2 .Cv/?, we are forced to have

h.w; e/.z/; vid�1
hz; wie�1

D 0:

So either h.w; e/.z/; vi D 0 for all z 2 .Cv/?, or w 2 Cv.
Case 1. First assume the former. Then

h.w; e/.z/; vi D hz; wiehw; vi C hz; vi � hz; wihw; vi

D hz; wiehw; vi � hz; wihw; vi D 0 for all z 2 .Cv/?:

Certainly this is satisfied when w ? v, in which case .v; d/ ı .w; e/ D .w; e/ ı .v; d/ is true.

Case 2. When w 6? v, we instead require that hz; wie�1 D 1 for all z 2 .Cv/? n .Cw/?. This is not
possible unless .Cv/? � .Cw/?, i.e., if v k w, and so we must have v D �w for some � 2 S1. In
this case, we explicitly check commutativity: taking cw 2 CnC1, we have

.�w; d/ ı .w; e/.cw/ D .�w; d/.ce��1�w/ D cde��dC1w;

.w; e/ ı .�w; d/.c��1�w/ D .w; e/.cd ��dC1w/ D cde��deCew:

So equality holds only if �.d�1/.e�1/ D 1.

3.2.3 Unitary actions on the split polynomials
By construction, SP.n/ has both a left and right U.nC 1/-action given by pre- and post-composition
respectively:

U.nC 1/ � SP.n/ �! SP.n/

.A; f / 7�! A ı f ;
and SP.n/ � U.nC 1/ �! SP.n/

.f; A/ 7�! f ı A:

The left action is free because each f 2 SP.n/ is a non-constant polynomial map CnC1 ! CnC1,
and therefore surjective, and the unitary action on the codomain CnC1 of f is free. The right action,
however, is not free. An example of this is seen even in the case n D 0, where we have .�z/d D zd

as long as � 2 U.1/ D S1 is a d th root of unity.
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3.3 The A-space
This section will deal with the quotient of the split polynomials under the unitary action defined in
the previous section. As it will turn out, this quotient will reveal much of the structure of the split
polynomial space.
Definition 3.3.1 (A-space). We write A.n/´ U.nC 1/nSP.n/, called the A-space, for the quotient
of SP.n/ under its left U.nC 1/-action.

By modding out by the left unitary action, we are left with the “split polynomial part” of the normal
form factorisation.
Definition 3.3.2 (Atomic A-space). By definition, the atomic split polynomial space SP.n/at is a
stable subspace under the U.nC 1/-actions. We define the quotient A.n/at ´ U.nC 1/nSP.n/at to
be the atomic A-space.

The atomic A-space consists of the split polynomials which admit a normal form factorisation
consisting of only a single atomic split polynomial (and possibly unitary maps).
Remark 3.3.3. We remark that we call the quotient space the “A-space” following the work of C. Nagy
during his PhD. The choice of name apparently does not have any particular meaning.

An important property of A.n/ is that for an equivalence class Œf � 2 A.n/, each f 0 2 Œf � has the
same set of critical points, i.e., det Df 0

z D 0 if and only if det Dfz D 0 for all z 2 CnC1. So the set of
critical points

ZŒf � D f z 2 CnC1
j Dfz is not surjective g

is an invariant of the equivalence class Œf � and there is a well-defined map

Z W A.n/ �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �
(3.1)

taking an equivalence class to its set of critical points. A few questions which arise now include:

1. Is Z injective, i.e., is an equivalence class in A.n/ uniquely identified by its set of critical
points?

2. How do the relations in SP.n/ descend to A.n/, and are there any new relations?

3.3.1 Decomposition by degree
Each smooth map f W CnC1 ! CnC1 has a degree which is an integer defined to be the (finite) sum
[Mil65, §5]

deg f D
X

x2f �1.y/

sign det Dfx;

where y 2 CnC1 is a regular value of f . The degree map deg W C 1.CnC1; CnC1/ ! Z is locally
constant, and hence its restriction to SP.n/, which we continue to denote by deg, decomposes the split
polynomial space into its degree-d components:

SP.n/ D
G

d2Z>0

SP.n/d ; where SP.n/d ´ deg�1.d/ D f f 2 SP.n/ j f has degree d g:
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We remark that polynomials and unitary maps have positive degree, and hence we only have degree-d
components for d > 0. Furthermore, because unitary maps have degree 1, each degree-d component
is stable under both the left and right U.nC 1/-actions. So there is a corresponding decomposition of
the A-space

A.n/ D
G

d2Z>0

A.n/d ; where A.n/d ´ U.nC 1/nSP.n/d :

Notation 3.3.4 (Atomic spaces). We write SP.n/at
d

and A.n/at
d

for the degree-d components of the
atomic split polynomial space and atomic A-space respectively.

3.4 Models for the A-space
The prime factorisation of d constrains the possible ways in which a map f 2 SP.n/d with degree d

can factorise into atomic split polynomials. In this section, we will provide some results describing
the structure of the A-space based on the primes that appear in the factorisation of d .

Let the prime factorisation of d be
d D p1 � � �pk

for primes p1; : : : ; pk (not necessarily distinct). Because degree is multiplicative under composition,
the map f must admit a factorisation into the normal form

f D A ı .v1; pi1
/ ı � � � ı .vk; pik

/

for A 2 U.nC 1/, v1; : : : ; vk 2 S2nC1, and .i1; : : : ; ik/ is some permutation of .1; : : : ; k/ giving the
ordering of the prime degrees in the factorisation. Therefore in A.n/d , Œf � D Œ.v1; pi1

/ı� � �ı.vk; pik
/�.

3.4.1 The case of d arbitrary
When d is arbitrary, we state the following conjectures, for which we do not yet have proofs.
Conjecture 3.4.1 (Injectivity of Z). Let d be a positive integer. The map

ZjA.n/d
W A.n/d �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/d to its set of critical points is injective.

Proposition 3.4.1 (Relations in A.n/d ). Let d be a product of primes p1 � � �pk. In the A-space of
degree d , the following relations are satisfied for all v1; : : : ; vk 2 S2nC1, � 2 S1:

1.
�
.v1; pi1

/ ı � � � ı .vj �1; pij �1
/ ı .�vj ; pij / ı .vj C1; pij C1

/ ı � � � ı .vk; pik
/
�

D
�
.A�

pij
�1

vj
v1; pi1

/ ı � � � ı .A�
pij

�1

vj
vj �1; pij �1

/ ı .vj ; pij / ı .vj C1; pij C1
/ ı � � � ı .vk; pik

/
�
:

2. If either vj k vj C1 or vj ? vj C1 then

Œ.v1; pi1
/ ı � � � ı .vj ; pij / ı .vj C1; pij C1

/ ı � � � ı .vk; pik
/�

D Œ.v1; pi1
/ ı � � � ı .vj C1; pij C1

/ ı .vj ; pij / ı � � � ı .vk; pik
/�:
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Proof. That these relations hold is an exercise in applying Relations in SP.n/ inductively. The details
are omitted.

Conjecture 3.4.2. The relations described in Proposition 3.4.1 are the only relations in A.n/d .
The above conjectures may be a subject of future study.

3.4.2 The case of d D pk, p prime.
When the degree d is a power of a prime pk, the normal form factorisation of f 2 SP.n/ becomes

f D A ı .v1; p/ ı � � � ı .vk; p/

for A 2 U.nC 1/ and v1; : : : ; vk 2 S2nC1, and correspondingly Œf � D Œ.v1; p/ ı � � � ı .vk; p/� in
A.n/pk . Importantly, the degrees of the atomic split polynomials in the factorisation of f are all equal
to the prime p. Thus, for brevity, we may elide the p in the factorisation of an element of A.n/pk

without ambiguity in the ordering of the primes.
We restate Conjecture 3.4.1 (Injectivity of Z) and Conjecture 3.4.2 specialised to the case when

d D pk .
Conjecture 3.4.3 (Injectivity of Z for d D pk). The map

ZjA.n/
pk
W A.n/pk �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/pk to its set of critical points is injective.

Conjecture 3.4.4 (Relations in A.n/pk ). In the A-space of degree pk, the following relations are
satisfied for all v1; : : : ; vk 2 S2nC1, � 2 S1:

1. Œv1 ı � � � ı vi�1 ı �vi ı viC1 ı � � � ı vk� D ŒA�p�1

vi
v1 ı � � � ı A�p�1

vi
vi�1 ı vi ı viC1 ı � � � ı vk�.

2. Œv1 ı � � � ı vi ı viC1 ı � � � ı vk� D Œv1 ı � � � ı viC1 ı vi ı � � � ı vk� if either vi k viC1 or vi ? viC1.

Furthermore, these are the only relations in A.n/pk .
For this thesis, we will assume the truth of these conjectures. However, we have positive results in

the special case k D 2.
Theorem 3.4.5 (Injectivity of Z for d D p2). The map

ZjA.n/
p2
W A.n/p2 �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/p2 to its set of critical points is injective.

Theorem 3.4.6 (Relations in A.n/p2). In the A-space of degree p2, the following relations are
satisfied for all v; w 2 S2nC1, � 2 S1:

1. Œ�v ı w� D Œv ı w� and Œv ı �w� D ŒA�p�1

w v ı w�.

2. Œv ı w� D Œw ı v� if either v k w or v ? w.
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Furthermore, these are the only relations in A.n/p2 .
We omit these proofs here, and provide them in Appendix A.
We now aim to build a model for A.n/pk assuming Conjecture 3.4.4 (Relations in A.n/pk ). Consider

the following iterated twisted balanced product

zA.n/pk ´ .� � � ..CP n
z�

S1

k � 1 times‚ …„ ƒ
L2nC1

p�1 / z�
S1

L2nC1
p�1 / z�

S1
� � � / z�

S1
L2nC1

p�1 ; (3.2)

defined inductively by the following process:

• zA.n/p is a copy of CP n.

• zA.n/p2 D zA.n/p z�S1
L2nC1

p�1 is the quotient of the product zA.n/p � L2nC1
p�1 D CP n � L2nC1

p�1

under the S1 action

S1 � .CP n � L2nC1
p�1 / �! CP n � L2nC1

p�1

.�p�1; .Œv�; Œw�// 7�! .ŒA
�1�p

w v�; Œ�w�/:

• In general for k > 2, zA.n/pk D zA.n/pk�1 z�S1
L2nC1

p�1 is the quotient of the product zA.n/pk�1 �

L2nC1
p�1 under the S1 action

S1 � . zA.n/pk�1 � L2nC1
p�1 / �! zA.n/pk�1 � L2nC1

p�1

.�p�1; .Œv1; : : : ; vk�1�; Œvk�// 7�! .ŒA
�1�p

vk
v1; : : : ; A

�1�p

vk
vk�1�; Œ�vk�/:

Of course, z�S1 is not associative. The twisted balanced product imposes relation 1 of Conjecture 3.4.4
(Relations in A.n/pk ). To impose relation 2, we further define the equivalence relation

Œv1; : : : ; vi ; viC1; : : : ; vk� �pk Œv1; : : : ; viC1; vi ; : : : ; vk� if and only if vi k viC1 or vi ? viC1:

Corollary 3.4.1. The map zA.n/pk =�pk ! A.n/pk sending an equivalence class Œv1; : : : ; vk� 2
zA.n/pk =�pk to the equivalence class Œv1 ı � � � ı vk� 2 A.n/pk is a homeomorphism.

3.4.3 The case of d D p, p prime

We briefly consider the atomic case when d is a prime. On zA.n/p, the equivalence relation �p is the
identity relation. Therefore A.n/p Š zA.n/p Š CP n is just complex projective space.
Remark 3.4.7 (The atomic A-space as complex projective space). In fact, the above result holds true
because A.n/p is an atomic A-space. In general for arbitrary d , we have still have a homeomorphism
A.n/at

d
Š CP n.
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3.4.4 The case of d D p2, p prime
We now consider the case when d is the square of a prime more closely. From Corollary 3.4.1, A.n/p2

is identified with the quotient

A.n/p2 Š
CP n z�S1 L2nC1

p�1

�p2

; where Œv; w� �p2 Œw; v� if and only if v ? w or v k w:

We remark that Œv; w� D Œw; v� for v k w in CP n z�S1 L2nC1
p�1 already. Now, the definition of �p2

suggests that we should consider the following two distinguished subspaces of A.n/p2 .
Definition 3.4.8 (Diagonal and anti-diagonal). Define the two subspaces of CP n z�S1 L2nC1

p�1

� D f Œv; w� 2 CP n
z�

S1
L2nC1

p�1 j v k w g; and

��
D f Œv; w� 2 CP n

z�
S1

L2nC1
p�1 j v ? w g:

We call their images in the quotient A.n/p2 the diagonal and the anti-diagonal of A.n/p2 respectively.
Observe the following properties:

• � is homeomorphic the diagonal �CP n � CP n � CP n. To see this, consider the subspace
of CP n � L2nC1

p�1 consisting of pairs .Œv�; Œw�/ with v k w. The orbit of .Œv�; Œw�/ under the
S1-action consists of elements of the form

�p�1
� .Œv�; Œw�/ D .ŒA�1�p

w v�; Œ�w�/ D .Œ�1�pv�; Œ�w�/ D .Œv�; Œ�w�/:

So the S1-action restricted to this subspace is trivial on the CP n factor.
Because �p2 is the identity relation when restricted to �, � is homeomorphic to its image
under the map CP n z�S1 L2nC1

p�1 ! A.n/p2 . We also denote the the image � and freely identify
the two spaces.

• Similarly, �� is homeomorphic anti-diagonal of CP n, defined

��
CP n D f .Œv�; Œw�/ 2 CP n

� CP n
j v ? w g:

This is because the S1-action restricted to the subspace of CP n � L2nC1
p�1 consisting of pairs

.Œv�; Œw�/ with v ? w is again trivial on the CP n factor.
The equivalence relation �p2 restricted to �� is precisely the orbit relation under Z2-action
swapping the two factors, defined t � Œv; w� D Œw; v� for t 2 Z2 the generator. The quotient
��=Z2 is a subspace of A.n/p2 .

The two subspaces � and ��=Z2 define a stratification of the A-space consisting of the following
strata:

1. The top stratum A.n/p2 n .� t��=Z2/, consisting of equivalence classes of split polynomials
which are the composition of two atomic split polynomials .v; p/ and .w; p/ in generic position,
i.e., v ¬ w and v 6? w. These are the atomic split polynomials that do not commute by
Proposition 3.2.2.

2. The bottom stratum � t��=Z2, consisting of equivalence classes of split polynomials which
are the composition of two atomic split polynomials that do commute by Proposition 3.2.2.
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3.4.5 The case of d is a product of distinct primes
If d is a product of distinct primes p1 � � �pk , the stratification of A.n/d has a simple description based
on the permutation of the primes in the normal form factorisation.

We again restate Conjecture 3.4.1 (Injectivity of Z) and Conjecture 3.4.2 specialised to the case
when d D p1 � � �pk .
Conjecture 3.4.9 (Injectivity of Z for d a product of distinct primes). Let d be a product of distinct
primes. The map

ZjA.n/d
W A.n/d �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/d to its set of critical points is injective.

Conjecture 3.4.10 (Relations in A.n/d ). Let d be a product of distinct primes p1 � � �pk. In the
A-space of degree d , the following relations are satisfied for all v1; : : : ; vk 2 S2nC1, � 2 S1:

1.
�
.v1; pi1

/ ı � � � ı .vj �1; pij �1
/ ı .�vj ; pij / ı .vj C1; pij C1

/ ı � � � ı .vk; pik
/
�

D
�
.A�

pij
�1

vj
v1; pi1

/ ı � � � ı .A�
pij

�1

vj
vj �1; pij �1

/ ı .vj ; pij / ı .vj C1; pij C1
/ ı � � � ı .vk; pik

/
�
:

2. If either vj k vj C1 or vj ? vj C1 then

Œ.v1; pi1
/ ı � � � ı .vj ; pij / ı .vj C1; pij C1

/ ı � � � ı .vk; pik
/�

D Œ.v1; pi1
/ ı � � � ı .vj C1; pij C1

/ ı .vj ; pij / ı � � � ı .vk; pik
/�:

Furthermore, these are the only relations in A.n/d .
For this thesis, we will assume the truth of these conjectures. However, we again have positive

results in the special case k D 2.
Theorem 3.4.11 (Injectivity of Z for d D pq). Let p and q be distinct primes. The map

ZjA.n/pq
W A.n/pq �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/pq to its set of critical points is injective.

Theorem 3.4.12 (Relations in A.n/pq). Let p and q be distinct primes, and let fd; eg D fp; qg. In
the A-space of degree pq, the following relations are satisfied for all v; w 2 S2nC1, � 2 S1:

1. Œ.�v; d/ ı .w; e/� D Œ.v; d/ ı .w; e/� and Œ.v; d/ ı .�w; e/� D Œ.A�e�1

w v; d/ ı .w; e/�.

2. Œ.v; d/ ı .w; e/� D Œ.w; e/ ı .v; d/� if either v k w or v ? w.

Furthermore, these are the only relations in A.n/pq.
The proofs are provided in Appendix A.
Consider now the following iterated twisted balanced product

zA.n/pi1
;:::;pik

´ .� � � ..CP n
z�

S1
L2nC1

pi1
�1/ z�

S1
L2nC1

pi2
�1/ z�

S1
� � � / z�

S1
L2nC1

pik
�1;
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which is defined analogously to the construction in Section 3.4.2 (c.f. equation (3.2)) for each permu-
tation of the primes .p1; : : : ; pk/. The A-space now has the following description: it is a quotient of
the disjoint union

zA.n/d ´

a
permutations
i1; : : : ; ik

zA.n/pi1
;:::;pik

under the equivalence relation�d which imposes relation 2 of Conjecture 3.4.10 (Relations in A.n/d ).

3.4.6 The case of d D pq, p, q distinct primes.
We again consider the specific case when d is the product of two distinct primes more closely. The
A.n/pq space is constructed by taking the disjoint union of the two spaces

zA.n/p;q D CP n
z�

S1
L2nC1

q�1 and zA.n/q;p D CP n
z�

S1
L2nC1

p�1 ;

and quotienting out by the equivalence relation generated by the relations

zA.n/d;e 3 Œv; w� �pq Œw; v� 2 zA.n/e;d if v ? w or v k w

for fd; eg D fp; qg. The quotient map zA.n/pq � zA.n/pq=�pq D A.n/pq restricts to homeo-
morphisms on the subspaces zA.n/p;q and zA.n/q;p; we will write A.n/p;q and A.n/q;p for their
homeomorphic images respectively. Like for the d D p2 case, we consider the following two
distinguished subspaces.
Definition 3.4.13 (Diagonal and anti-diagonal). Define the subspaces

�p;q D f Œv; w� 2 CP n
z�

S1
L2nC1

q�1 j v k w g; �q;p D f Œw; v� 2 CP n
z�

S1
L2nC1

p�1 j v k w g; and

��
p;q D f Œv; w� 2 CP n

z�
S1

L2nC1
q�1 j v ? w g; ��

q;p D f Œw; v� 2 CP n
z�

S1
L2nC1

p�1 j v ? w g:

In the quotient A.n/pq , the images of �p;q and �q;p are identified through �pq , and the same is true
for ��

p;q and ��
q;p. We denote their common images by � and �� respectively, which we call the

diagonal and anti-diagonal of A.n/pq.
Following the discussion of Section 3.4.4:

• � is homeomorphic to the diagonal �CP n � CP n � CP n.

• �� is homeomorphic to the anti-diagonal ��
CP n � CP n � CP n, this time with no additional

quotient by a Z2-action.

The subspaces � and �� define a stratification of A.n/pq, but we additionally have a stratification
of the top stratum given by the two subspaces A.n/p;q and A.n/q;p. These subspaces specify the
ordering of prime degrees:

• If Œf � 2 A.n/p;q then f has a normal form A ı .v; p/ ı .w; q/ where the degree-p map is to
the left of the degree-q map.

• If Œf � 2 A.n/q;p, then f has a normal form A ı .w; q/ ı .v; p/ where the degree-q map is to
the left of the degree-p map.
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Remark 3.4.14. The notion of the diagonal and anti-diagonal generalises to when d is a product of
more than two primes, but the analysis quickly becomes much more complicated. So we leave these
cases for future investigation.

3.5 Stabilisation
For each positive integer n, there is an inclusion map in W SP.n/ ,! SP.n C 1/ induced by the
inclusion CnC1 ,! CnC2. More precisely, writing CnC2 D CnC1 � C, we define for f 2 SP.n/

in.f /´ f � idC W CnC1
� C �! CnC1

� C;

giving rise to the commutative diagram

CnC1 � C CnC1 � C

CnC1 CnC1:

 

!
in.f /Df �idC

 
-

!

 

!
f

 
-

!
These inclusions allow us to have a well-defined notion of stabilisation for split polynomials, which
we will briefly explore in this section.
Definition 3.5.1 (Stable split polynomial space). We define the stable split polynomial space to be
the direct limit with respect to the family of inclusions in W SP.n/ ,! SP.nC 1/, which we denote

SP´ lim
�!n

SP.n/:

Correspondingly, we denote the degree-d component of SP by SPd .
The space SP has left and right unitary actions by the stable unitary group U induced by the left

and right U.nC 1/-actions on SP.n/ defined in Section 3.2.3. The left action remains free, while the
right action is not free. So there is a corresponding stable A-space defined as follows.
Definition 3.5.2 (Stable A-space). The stable A-space is quotient A´ U nSP, and correspondingly
we denote the degree-d component by Ad .

Alternatively, we can see that the inclusions in W SP.n/ ,! SP.n C 1/ descend to the quotients
in W A.n/ ,! A.nC 1/, and therefore we have a natural homeomorphism

lim
�!n

A.n/ Š A:

Stabilisation of A.n/p2 and A.n/pq. In terms of our models for A.n/p2 and A.n/pq, there are
inclusions CP n ,! CP nC1, L2nC1

p�1 ,! L2nC3
p�1 and L2nC1

q�1 ,! L2nC3
q�1 induced by CnC1 ,! CnC2.

Therefore, we also have natural homeomorphisms

lim
�!n

CP n z�S1 L2nC1
p�1

�p2

Š Ap2 and lim
�!n

.CP n z�S1 L2nC1
p�1 /q .CP n z�S1 L2nC1

q�1 /

�pq

Š Apq:



4 The classifying spaces .QS0=U /d and
U nnQS0

d

In the theory of fibrewise degree-d maps developed by Brumfiel and Madsen, they identify a clas-
sifying space for fibrewise degree-d maps between oriented real vector bundles up to O.n/-bundle
isomorphisms, denoted by .QS0=O/d [BM76, §4]. In this chapter, we will study the complex ver-
sion, which we denote appropriately by .QS0=U /d , and construct a model for this classifying space
explicitly as the homotopy orbits U nnQS0

d
.

4.1 Constructing the universal bundle

In this section, we begin by constructing the finite-dimensional version of the homotopy orbit space
U.n/nnMap.S2n�1; S2n�1/d . We then establish the existence of a universal fibrewise degree-d map
over U.n/nnMap.S2n�1; S2n�1/d , which will allow us to prove that U.n/nnMap.S2n�1; S2n�1/d is a
model for the classifying space for fibrewise degree-d maps between bundles of finite rank n.

Recall that EU.n/! BU.n/ is the universal bundle over the classifying space BU.n/ for princi-
pal U.n/-bundles. A model for BU.n/ is the infinite-dimensional Grassmannian Gn.C1/ [Hat17,
Theorem 1.16]. This is the model we will work with in this thesis. The total space EU.n/ is then
frame bundle of the associated tautological vector bundle V U.n/! BU.n/. We will denote points
of EU.n/ as pairs .l; L/, where

• l � C1 is an n-plane, equipped with an inner product which is the restriction of the canonical
inner product on C1; and

• L W Cn ! l is an orthonormal frame for l , i.e., a unitary map Cn ! l with respect to the inner
products on Cn and l .

The orthonormal frame L defines coordinates on l via the assignment

.z1; : : : ; zn/
L
7��! z1v1 C � � � C znvn;

where v1; : : : ; vn is the orthonormal basis of l given by vi D L.ei/, i D 1; : : : ; n, for e1; : : : ; en the
standard basis of Cn.
Definition 4.1.1. Let n and d be a positive integers. The homotopy orbit space U.n/nnMap.S2n�1; S2n�1/d

is defined to be the balanced product

U.n/nnMap.S2n�1; S2n�1/d ´ EU.n/ �
U.n/

Map.S2n�1; S2n�1/d ;

25
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d

where EU.n/ has its usual right U.n/-action and Map.S2n�1; S2n�1/d has a left U.n/-action given
by pre-composition:

U.n/ �Map.S2n�1; S2n�1/d �! Map.S2n�1; S2n�1/d

.g; f / 7�! g ı f:

The homotopy orbit space comes equipped with a projection map to the classifying space for principal
U.n/-bundles, which we denote by pn W U.n/nnMap.S2n�1; S2n�1/d ! BU.n/.

For this section, we use following notation for points of U.n/nnMap.S2n�1; S2n�1/d : each point
Œ.l; L/; f � 2 U.n/nnMap.S2n�1; S2n�1/d is denoted as an equivalence class, where

• f W S2n�1 ! S2n�1 is a degree d map of .2n � 1/-spheres; and

• .l; L/ is a point of EU.n/ consisting of an n-plane l and an orthonormal frame L.

• The equivalence class Œ.l; L/; f � as set has the description

Œ.l; L/; f � D f ..l; L ı g/; g�1
ı f / j g 2 U.n/ g:

Remark 4.1.2 (A point about notation). It is more typical to denote the homotopy orbit space by
Map.S2n�1; S2n�1/d ==U.n/. However, in our case, we have both a left and right U.n/-action on
Map.S2n�1; S2n�1/d given by pre- and post-composition. In order to emphasise which action we are
quotienting by, we choose to use the more unconventional notation of U.n/nnMap.S2n�1; S2n�1/d .

4.1.1 The canonical vector bundle over U.n/nnMap.S2n�1; S2n�1/d

Recall that V U.n/! BU.n/ is the canonical vector bundle over BU.n/. Pulling back V U.n/ along
the projection map pn W U.n/nnMap.S2n�1; S2n�1/d ! BU.n/, we obtain the canonical vector
bundle over U.n/nnMap.S2n�1; S2n�1/d

p�
nV U.n/ V U.n/

U.n/nnMap.S2n�1; S2n�1/d BU.n/:

 

!

 

!

 

!

 

!
pn

y

As a topological space, the total space of the pullback bundle p�
nV U.n/ is the subspace of the product

U.n/nnMap.S2n�1; S2n�1/d � V U.n/ given by

p�
nV U.n/ D f .Œ.l; L/; f �; v/ j Œ.l; L/; f � 2 U.n/nnMap.S2n�1; S2n�1/d ; v 2 l g:

4.1.2 Universal fibrewise degree-d map over U.n/nnMap.S2n�1; S2n�1/d

Let Œ.l; L/; f � 2 U.n/nnMap.S2n�1; S2n�1/d . We wish to construct a degree-d map on the fibre of
p�

nV U.n/ over Œ.l; L/; f �. To do this, recall that the orthonormal frame L defines coordinates on l

via the assignment
.z1; : : : ; zn/

L
7��! z1 L.e1/C � � � C zn L.en/;
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where e1; : : : ; en the standard basis of Cn. These coordinates let us identify S2n�1 with its image
L.S2n�1/ � l . Hence, we can realise f in the equivalence class Œ.l; L/; f � as a map S2n�1 ! S.l/,
or more precisely, there is an induced map

zfl D L ı f W S2n�1
�! S.l/; where S.l/´ L.S2n�1/ � l (4.1)

fitting into the following diagram:

S2n�1 S.l/

S2n�1 S2n�1:

 

!
zfl

 

!
f

 

 

 

 

 

!

L

The induced zfl is well-defined on each equivalence class Œ.l; L/; f � due to the commutativity of the
following diagram:

S2n�1 S.l/

S2n�1 S.l/

S2n�1 S2n�1

S2n�1 S2n�1:
 

!
zfl

 

 

 

 

 

 

 

 

 

 

 

 

 

!
f

 

 

 

 

 

!

L

 

!

g�1

 

!
g�1ıf

 

!

Lıg

 

 

 

 

 

!

g.g�1ıf /l D zfl

Considering S2n�1 as the fibre of trivial bundle S.Cn/, the maps zfl fit together to define a fibrewise
degree-d map

f univ
n W S.Cn/ �! S.p�

nV U.n//

.Œ.l; L/; f �; z/ 7�! .Œ.l; L/; f �; zfl.z//

from the trivial sphere bundle to the sphere bundle of p�
nV U.n/. That is to say, on each fibre over

Œ.l; L/; f �, f univ
n restricts to zfl to give the following commutative diagram:

S2n�1 S.l/

S.Cn/ S.p�
nV U.n//

U.n/nnMap.S2n�1; S2n�1/d :

 

!
zfl

 
-

!

 
-

!

 

!
f univ

n

 

!

 

!
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4.2 The space U.n/nnMap.S2n�1; S2n�1/d as a classifying space
In this section, we exhibit that U.n/nnMap.S2n�1; S2n�1/d is the classifying space for the following
Brown functor.
Definition 4.2.1. Let X be a connected compact Hausdorff space. We define

F ts
d;n.X/ D f f ts

W S.Cn/! S.F n/ g='

to be the set of homotopy equivalence classes of fibrewise degree-d maps between rank n vector
bundles over X where the source is trivial. In particular, this defines a functor

F ts
d;n W KHausop

�! Sets:

The functor F ts
d;n

(when restricted to CW-complexes) satisfies the conditions of Brown’s Representabil-
ity Theorem [Bro62], and therefore is representable by a classifying space. We ambiguously denote
models for this classifying space by .QS0=U /ts

d;n
, which is well-defined up to homotopy type.

Similarly, we can define F tt
d;n

where we trivialise the target instead.

Theorem 4.2.2 (A classifying space for F ts
d;n

). The space U.n/nnMap.S2n�1; S2n�1/d is a model for
the classifying space .QS0=U /ts

d;n
of F ts

d;n
, i.e., there is a natural bijection

ŒX; U.n/nnMap.S2n�1; S2n�1/d � �! F ts
d;n

.X/

Œˆ� 7�! ˆ�f univ
n

for connected compact Hausdorff spaces X .

Proof. We need to prove surjectivity and injectivity. We begin with surjectivity.
Surjectivity. Let f W S.Cn/ ! S.F / be a fibrewise degree-d map over X . Because F ! X is a
rank n vector bundle over X , there is a homotopy class Œ�� 2 ŒX; BU.n/� such that F Š ��V U.n/,
i.e., � is the classifying map of F :

F ��V U.n/ V U.n/

X BU.n/:

 

!
Š

 

!

 

!

 

!

 

!

 

!
�

y

WLOG, we identify F with the isomorphic bundle ��V U.n/. We wish to create a lift ˆ of � to
U.n/nnMap.S2n�1; S2n�1/d fitting into the following diagram:

U.n/nnMap.S2n�1; S2n�1/d

X BU.n/:

 

! pn

 

!
ˆ

 

!
�

Define

ˆ W X �! U.n/nnMap.S2n�1; S2n�1/d ; ˆ.x/ D Œ..��V U.n//x; L/; L�1
ı fx�: (4.2)

By this, we mean:
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• l D .��V U.n//x � C1 is the n-dimensional subspace of C1 corresponding to the fibre of
��V U.n/ over x 2 X ;

• L W Cn ! l is an orthonormal frame for l ; and

• fx W S
2n�1 ! S.l/ is the restriction of f to the fibre over x 2 X , a degree-d map of spheres,

where we identify the fibre S.Cn/x of the trivial sphere bundle with S2n�1.

Note that the definition of ˆ does not depend on the choice of L, for if L0 W Cn ! l is another
orthonormal frame for l , then g D L�1L0 2 U.n/ so that

Œ..��V U.n//x; L/; L�1
ı fx� D Œ..��V U.n//x; L ı g/; g�1

ı L�1
ı fx�

D Œ..��V U.n//x; L0/; ıL0�1
ı fx�:

By definition of the pullback for fibrewise degree-d maps, the pullback of f univ
n W S.Cn/ !

S.p�
nV U.n// along ˆ is a map

ˆ�f univ
n W S.ˆ�Cn/ �! S.ˆ�p�

nV U.n//:

Now, the pullback of the trivial bundle Cn
! BU.n/ is again a trivial bundle, this time over X . As

for ˆ�p�
nV U.n/! X , we have by functoriality that

ˆ�p�
n D .pnˆ/�

D ��;

and therefore ˆ�p�
nV U.n/ is precisely ��V U.n/. On each fibre, ˆ�f univ

n is defined to be the map

.ˆ�f univ
n /x D .f univ

n /ˆ.x/ W S
2n�1
�! S.��V U.n//x:

But recall from (4.2) that ˆ.x/ is given by Œ..��V U.n//x; L/; L�1ıfx�, where the Map.S2n�1; S2n�1/d

coordinate is the composition L�1 ı fx. From our definition of f univ
n , its restriction to the fibre

over Œ..��V U.n//x; L/; L�1 ı fx� is precisely L ı L�1 ı fx D fx (see equation (4.1)). Hence,
.ˆ�f univ

n /x D fx for each x 2 X , and therefore ˆ�f univ
n D f .

This shows surjectivity of ŒX; U.n/nnMap.S2n�1; S2n�1/d �! F ts
d;n

.X/.

Injectivity. For injectivity, we verify homotopy of classifying maps in two steps:

1. First for homotopies of fibrewise degree-d maps (see Definition 2.3.5).

2. Then for isomorphisms of fibrewise degree-d maps (see Definition 2.3.4).

This will be sufficient, for the two operations above generate the equivalence relation of homotopy
equivalence of fibrewise degree-d maps (see Definition 2.3.7).
Claim 4.2.3 (Homotopy of fibrewise degree-d maps). Let ˆ0; ˆ1 W X ! U.n/nnMap.S2n�1; S2n�1/d

be two maps, and denote fi D ˆ�
i f univ

n , i D 0; 1, for their pullback fibrewise degree-d maps. Suppose
there exists a homotopy between f0 and f1, i.e., a fibrewise degree-d map f W S.Cn/! S.F / over
X � I such that fi are the restrictions of f to X � fig, i D 0; 1. Then there exists a homotopy ˆt

between ˆ0 and ˆ1.
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Proof. We inspect the proof of surjectivity more carefully. Denote �i D pnˆi W X ! BU.n/

for i D 0; 1: these are the classifying maps for the target bundles of ˆ�
i f univ

n , i D 0; 1. We have
commutative diagrams

U.n/nnMap.S2n�1; S2n�1/d

X BU.n/;

 

! pn

 

!
ˆi

 

!
�i

for i D 0; 1. Hence, we see that the lifts ˆi must be of the form (4.2) constructed for the proof of
surjectivity. But now, since the pullbacks ��

i V U.n/ D F jX�fig, i D 0; 1, by assumption, ��
0 V U.n/

and ��
1 V U.n/ are isomorphic as vector bundles [Hat17, Proposition 1.7]. So there exists a homotopy

�t from �0 to �1: in fact, this homotopy can be taken to be such that ��
t V U.n/ D F jX�ftg. We now

need to lift this homotopy such that the lifts of the two ends �i coincide with the pre-existing lifts ˆi ,
i D 0; 1:

U.n/nnMap.S2n�1; S2n�1/d

X BU.n/:

 

! pn

 

!
ˆt

 

!
�t

But because we have the “interpolating” fibrewise degree-d map f W S.Cn/! S.F / over X � I ,
this lift can be constructed exactly as in (4.2). We define

ˆt.x/ D Œ..��
t V U.n//x; L/; L�1

ı fx;t �:

By construction, ˆt agrees with ˆ0 and ˆ1 at t D 0; 1.
Dealing with isomorphisms will use the above claim.

Claim 4.2.4 (Isomorphism of fibrewise degree-d maps). Let ˆ0; ˆ1 W X ! U.n/nnMap.S2n�1; S2n�1/d

be two maps, and denote fi D ˆ�
i f univ

n , i D 0; 1, for their pullback fibrewise degree-d maps. Suppose
there exists an isomorphism between f0 and f1. Then there exists a homotopy ˆt between ˆ0 and ˆ1.

Proof. Again, denote �i D pnˆi W X ! BU.n/ for i D 0; 1. By definition, the data of a fibrewise
degree-d map isomorphism is a commutative diagram

S.Cn/ S.��
0 V U.n//

S.Cn/ S.��
1 V U.n//

X

X:

 

!
f0

 

!

g

Š

 

!

 

!
h

Š 

!

 

!
f1

 

!

 

!
 

 

 

 

for U.n/-bundle isomorphisms g and h. But with this data, we can construct a fibrewise degree-d
map over X � I as follows:
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1. Over X � Œ0; 1=2�, we take f0 � id W S.Cn/ � Œ0; 1=2�! S.��
0 V U.n// � Œ0; 1=2�.

2. Over X � Œ1=2; 1�, we take f1 � id W S.Cn/ � Œ1=2; 1�! S.��
0 V U.n// � Œ1=2�.

3. We glue f0 � id to f1 � id using the U.n/-bundle isomorphisms g on the source bundle and h

on the target bundle.

Calling this new fibrewise degree-d map f , f satisfies the hypotheses of Claim 4.2.3 by construction.
And hence we obtain the desired homotopy ˆt .

The above two claims show injectivity of ŒX; U.n/nnMap.S2n�1; S2n�1/d �! F ts
d;n

.X/.

Remark 4.2.5. We remark that the above proof applies to F tt
d;n

where we have chosen to trivialise the
target bundle. However, the proof does not depend actually on this choice. It is equally possible to
choose to trivialise the source bundle, proving an analogous result for F ts

d;n
. In this case, the classifying

space would be constructed by taking the homotopy orbit space Map.S2n�1; S2n�1/d ==U.n/ of
Map.S2n�1; S2n�1/d under the right U.n/-action.

4.3 A stable viewpoint
In this section, we put Theorem 4.2.2 (A classifying space for F ts

d;n
) into the stable setting, and provide

a different proof under this setting by looking at homotopy groups.
Definition 4.3.1. Let X be a connected compact Hausdorff space. We define

Fd .X/ D f f W S.E/! S.F / g='s

to be the set of stable homotopy equivalence classes of fibrewise degree-d maps between vector
bundles over X , i.e., it is the stable equivalent of F ts

d;n
.X/. This defines a functor

Fd W KHausop
�! Sets:

The functor Fd (restricted to CW-complexes) satisfies the conditions of Brown’s Representability
Theorem [Bro62] (c.f. Definition 4.2.1), and therefore is representable by a classifying space. We
denote models for the classifying space of Fd by .QS0=U /d , following [BM76, §4].

Remark 4.3.2 (The functor Q). Recall that given based space X , the functor Q applied to X is
defined to be the direct limit

QX ´ lim
�!n

�n†nX;

where �X is loop space of X , and †X is the (reduced) suspension of X .
Applied to the two point space S0, we have homotopy equivalences †nX ' Sn, and �nSn '

Map�.Sn; Sn/, and therefore
QS0

' lim
�!n

Map�.Sn; Sn/

is the direct limit of the space of based maps Sn ! Sn. The subspace QS0
d

is the degree d component
of QS0, obtained as a direct limit of the degree d components Map�.Sn; Sn/d of Map�.Sn; Sn/.
Equivalently, from the fibration sequence

Map�.Sn; Sn/d ,�! Map.Sn; Sn/d

ev
��� Sn;
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where ev is the evaluation map at a chosen basepoint of Sn, we find that the inclusion Map�.Sn; Sn/d ,!

Map.Sn; Sn/d induces isomorphisms on �k for all k < n. Therefore, in the limit as n!1, we have
a homotopy equivalence

QS0
d ' lim
�!n

Map.Sn; Sn/d :

We will instead take this direct limit to be our definition of QS0
d
.

Now, by taking the limit

U nnQS0
d D lim
�!n

U.n/nnMap.S2n�1; S2n�1/d ;

our construction of the finite-rank universal fibrewise degree-d maps f univ
n W S.Cn/! S.p�

nV U.n//

defines a universal fibrewise degree-d map over U nnQS0
d

which we will denote by f univ W S.C1/!

S.p�V U /, where p D limn pn W U nnQS0
d
! BU :

S1 S.l/

S.C1/ S.p�V U /

U nnQS0
d
:

 

!
zfl

 
-

!
 
-

!

 

!
f univ

 

!

 

!

Theorem 4.3.3 (A classifying space for Fd ). The space U nnQS0
d

is a model for the classifying
space, .QS0=U /d , and the classifying map �f univ W U nnQS0

d
! .QS0=U /d for f univ is a homotopy

equivalence.

Proof. We begin by remarking that bundle p�V U ! U nnQS0
d

is the pullback along the projection
map p W U nnQS0

d
! BU :

p�V U V U

U nnQS0
d

BU :

 

!

 

!

 

!

 

!
p

y

There is a map i W .QS0=U /d ! BU classifying for a fibrewise degree-d map f W S.E/! S.F /

over X the bundle difference ŒF �E� 2 zK.X/; that is, the pullback of V U along composition

X
�f

��! .QS0=U /d

i
��! BU

gives the reduced K-theory element ŒF�E�, where �f is the classifying map for f . The .QS0=O/d !

BU analogue is described by in [BM76, §4]. The map i gives rise to a fibration sequence

QS0
d

j
��! .QS0=U /d

i
��! BU:
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Here, we see that QS0
d

is the fibre of i because the classifying maps �f W X ! .QS0=U /d which
become null-homotopic after composing with i correspond precisely to the stable homotopy class
of fibrewise degree-d maps f W S.E/ ! S.F / such that ŒF � E� D 0 2 zK.X/, i.e., f is stably
isomorphic to t W S.Cn/! S.Cn/ for large n. Via adjunction, t is equivalent to a map X ! QS0

d
.

First, we check the commutativity (up to homotopy) of the following square:

U nnQS0
d

.QS0=U /d

BU BU :

 

!
�f univ

 

!p

 

! i

 

  

 

	 ‹

The composition i�f univ W U nnQS0
d
! BU going around the top right of the diagram corresponds

to the K-theory class Œp�V U � C1� D Œp�V U � 2 zK.U nnQS0
d
/ by definition of i . But p�V U is

the pullback of the universal bundle V U ! BU along p W U nnQS0
d
! BU , and p is tautologically

classifying map of p�V U . Being the vertical map on the left of the diagram, it yields the same
K-theory class Œp�V U � 2 zK.U nnQS0

d
/. So up to homotopy, the diagram commutes.

We now need to check that square for the induced map on fibres commutes (up to homotopy):

QS0
d

QS0
d

U nnQS0
d

.QS0=U /d

BU BU
 

  

 

 

!

 

! j

 

!
�f univ

 

!p

 

! i

 

 

 

 

	 ‹

	

But this follows from the same argument as above, where now we argue instead for a map g W X !

U nnQS0
d
, which is null-homotopic after composing with p. If pg ' const W X ! BU , then

Œpg� 2 ŒX; BU � corresponds to the element 0 2 zK.X/, and therefore the pullback g�f univ belongs
to the the stable homotopy class of fibrewise degree-d maps S.Cn/! S.Cn/ for large n. In other
words, g factors through the fibre QS0

d
of U nnQS0

d
. But now, by homotopy commutativity of the

bottom square, the composition i�f univg ' const W X ! BU is also null-homotopic, corresponding
to the same element 0 2 zK.X/, and so �f univg belongs the same stable homotopy class of fibrewise
degree-d maps S.Cn/! S.Cn/ for large n: it also factors through the fibre QS0

d
of .QS0=U /d :

QS0
d

QS0
d

X U nnQS0
d

.QS0=U /d

BU BU :

 

!

 

! 

!
g

 

!

�f univ g

 

  

 

 

!
g

 

!
const

 

!
�f univ

 

!p

 

! i
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Hence, we also have commutativity of the map on the fibres.
Now applying �k to the above diagram, we have by the long exact sequence for a fibration

:::
:::

�kC1.BU / �kC1.BU /

�k.QS0
d
/ �k.QS0

d
/

�k.U nnQS0
d
/ �k..QS0=U /d /

�k.BU / �k.BU /

�k�1.QS0
d
/ �k�1.QS0

d
/

:::
:::

 !  !

 

  

 

 !  !

 

  

 
 !  ! j�

 

!
�f univ�

 !p�  ! i�

 

 

 

 

 !  !

 

  

 

 !  !

for all k. Since 4 out of 5 of the above horizontal maps are isomorphisms, by the 5-lemma, �f univ W

U nnQS0
d
! .QS0=U /d induces an isomorphism on all �k, i.e., it is a weak homotopy equivalence.

The classifying space given by Brown’s Representability Theorem [Bro62] has the homotopy type of
a CW-complex, and the homotopy orbit space U nnQS0

d
is also a CW-complex. So by Whitehead’s

Theorem [Hat01, Theorem 4.5], it is a homotopy equivalence.

Remark 4.3.4. As for the finite-dimensional case, it is possible to prove analogously that the homotopy
orbit space QS0

d
==U obtained through the limit

QS0
d ==U D lim

�!n
Map.S2n�1; S2n�1/d ==U.n/

is also a model for the classifying space of Fd . Hence, in fact, the two homotopy orbit spaces U nnQS0
d

and QS0
d
==U by the left and right actions on QS0

d
respectively are homotopy equivalent.
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Recall that Theorem 2.2.3 provides us with a map N W Map0;1.bCnC1; bCnC1/! Map.S2nC1; S2nC1/.
By Remark 2.2.4, the degree-d split polynomial space SP.n/d has a map induced by N into the space
Map.S2nC1; S2nC1/d . Now, the U.nC1/-action on SP.n/d also allows us to define a homotopy orbit
space as follows (c.f. Definition 4.1.1).
Definition 5.0.1. The homotopy orbit space U.nC 1/nnSP.n/d is defined to be the balanced product

U.nC 1/nnSP.n/d ´ EU.nC 1/ �
U.nC1/

SP.n/d

under the usual right U.nC 1/-action on EU.nC 1/ and the free left U.nC 1/-action on SP.n/d .
The map SP.n/d ! Map.S2nC1; S2nC1/d induces a map on the homotopy orbits U.nC1/nnSP.n/d !

U.nC 1/nnMap.S2nC1; S2nC1/d . Taking the limit n!1, we obtain maps

U nnSPd D lim
�!n

U.nC 1/nnSP.n/d �! U nnQS0
d D lim
�!n

U.nC 1/nnMap.S2nC1; S2nC1/d :

In light of our construction in Chapter 4, we give a vague conjecture about U nnSPd .
Conjecture 5.0.2. U nnSPd is the classifying space for fibrewise degree-d split polynomial maps.

We leave investigating this result for future study.
To further motivate the study of the space U nnSPd , we introduce some theory from the work of

Crowley and Nagy [CN23]. Given a line bundle L ! Y over a smooth manifold Y , a divisor DL

of L is a transverse intersection of the zero section of L with itself. Now let n ! CP n denote the
tautological line bundle over CP n. For a multidegree d D fd1; : : : ; dkg, the complete intersection
Xn.d/ is a divisor of the bundle ˚d1

n ˚ � � � ˚ ˚dk
n . Using the theory of branched coverings, one can

construct a canonical normal map

O�.d/ D .n ! ˚d1

n /˚ � � � ˚ .n ! dk
n /;

which is the direct sum of fibrewise degree-di maps. The total degree is the product d ´ d1 � � � dk.
By our Theorem 4.3.3 (A classifying space for Fd ), O�.d/ defines a homotopy class of maps Œ�.d/ W

CP n ! U nnQS0
d
�, called the normal invariant of Xn.d/. However, we notice that by construction,

O�.d/ is a fibrewise split polynomial, and hence the normal invariant a posteriori is a homotopy class
of maps Œ�.d/ W CP n ! U==SPd �:

CP n U nnQS0
d

U nnSPd :

 

!
�.d/

 

!�.d/  
-

!

It is conjectured by Crowley and Nagy that if two normal invariants are homotopic in U nnQS0
d
, then

they are already homotopic in U nnSPd .
In this chapter, we study some properties of U nnSPd and the related A-space.

35
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5.1 The A-space and the homotopy quotient U.nC 1/nnSP.n/d

We actually have the following relationship between U.n C 1/nnSP.n/d and the related A-space
A.n/d , a consequent of SP.n/d having a free U.nC 1/ action.
Theorem 5.1.1. The homotopy orbit space U.nC 1/nnSP.n/d is homotopy equivalent to the degree-d
A-space A.n/d .

Proof. From the Borel construction with the left U.nC 1/-action on SP.n/d , we can construct two
different fibration sequences:

SP.n/d

EU.nC 1/ U.nC 1/nnSP.n/d A.n/d

BU.nC 1/:

 
-

!

 - !

 

!

 

!

The vertical sequence is the canonical fibration sequence of a homotopy orbit space. The horizontal
sequence arises from the fact that the left U.nC1/-action is free (recall Section 3.2.3): There is always
a projection U.nC1/nnSP.n/d ! A.n/d onto the quotient A.n/d D U.nC1/nSP.n/d , but the fibre
is EU.nC 1/ when the action is free. To see this, fix some basepoint Œf � 2 A.n/d . Now note that the
preimages of Œf � in U.nC 1/nnSP.n/d are orbits Œe0; f 0� of points .e0; f 0/ 2 EU.nC 1/ � SP.n/d

under the U.nC 1/-action such that Œf 0� D Œf �. By freeness of U.nC 1/ acting on SP.n/d , each
orbit Œe; f 0� has a canonical representative Œe; f � where the SP.n/d coordinate is exactly f . This
identifies the fibre with EU.nC 1/.

Now, because the fibre EU.nC 1/ is a contractible space, we have by the homotopy long exact
sequence for a fibration

� � � �! �k.EU.nC1// �! �k.U.nC1/nnSP.n/d / �! �k.A.n/d / �! �k�1.EU.nC1// �! � � � ;

where �k.EU.nC 1// D 0 for all k. Hence, the projection U.nC 1/nnSP.n/d ! A.n/d induces
isomorphisms on all homotopy groups, i.e., it is a weak homotopy equivalence. Since all spaces in
question are CW-complexes, by Whitehead’s Theorem [Hat01, Theorem 4.5], this induces a homotopy
equivalence U.nC 1/nnSP.n/d ' A.n/d .

Corollary 5.1.1. The homotopy orbit space U nnSPd is homotopy equivalent to the stable degree-d
A-space Ad .

Proof. This follows from Theorem 5.1.1 after taking the limit n!1.

5.2 Vector bundles over the A-space
Let � W SP.n/d ! A.n/d denote the quotient map of SP.n/d by the left U.nC 1/-action. Recall that
the left action is free, and so � is a principal U.nC 1/-bundle. It has an associated vector bundle,
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which we denote by V� W V.SP.n/d /! A.n/d . We are interested in the isomorphism class of V�. In
this section, we will study restrictions of V� to certain subspaces of A.n/d .

5.2.1 The bundle V� over the maximal anti-diagonal
For the rest of this section, we assume that k 6 nC 1 is a positive integer.

We define the anti-diagonal of the product .CP n/�k to be the subspace

��
CP n D f .Œv1�; : : : ; Œvk�/ 2 .CP n/�k

j vi ? vj for all i ¤ j g:

There are k orthogonal line bundles over ��
CP n . These are the tautological line bundles whose total

spaces, as subspaces of ��
CP n � CnC1, are given by

�i;n D f ..Œv1�; : : : ; Œvk�/; v/ j .Œv1�; : : : ; Œvk�/ 2 ��
CP n; v 2 Cvi g;

where i D 1; : : : ; k. Each �i;n comes equipped with a projection �i;n ! ��
CP n , which is the restriction

of the projection ��
CP n�CnC1 ! ��

CP n . The direct sum of all of these line bundles has an orthogonal
complement which also admits an explicit description: it is the bundle whose total space, as a subspace
of ��

CP n � CnC1, is given by

.�1;n ˚ � � � ˚ �k;n/?

D f ..Œv1�; : : : ; Œvk�/; v/ j .Œv1�; : : : ; Œvk�/ 2 ��
CP n; v 2 .Cv1 ˚ � � � ˚ Cvk/?

g:

Of course, we have the vector bundle isomorphism

�1;n ˚ � � � ˚ �k;n ˚ .�1;n ˚ � � � ˚ �k;n/?
Š CnC1;

where CnC1 denotes the trivial rank nC 1 bundle over ��
CP n .

We now turn our attention to the A-space.
Definition 5.2.1 (Maximal anti-diagonal of the A-space). Let d D p1 � � �pk be a product of distinct
primes. We define the maximal anti-diagonal of A.n/d to be the subspace

��
D f Œ.v1; p1/ ı � � � ı .vk; pk/� j v1; : : : ; vk 2 S2nC1; vi ? vj for all i ¤ j g:

By Proposition 3.2.2 (Commutativity of atomic split polynomials), .vi ; pi/ and .vj ; pj / commute
when vi ? vj , and so their ordering in the composition does not matter: the vectors vi are distinguished
by the prime degree pi of their atomic split polynomial map only. Therefore, there is a well-defined
map �� ! ��

CP n given by fixing a particular ordering of the prime factors:

Œ.v1; p1/ ı � � � ı .vk; pk/� 7�! .Œv1�; : : : ; Œvk�/:

This map is a homeomorphism by Proposition 3.4.1 (Relations in A.n/d ). Hence, the tautological
line bundles �i;n, i D 1; : : : ; k, can also be considered as line bundles over ��. Alternatively, we
give the explicit definition: the total spaces, as subspaces of �� � CnC1, are given by

�pi ;n D f .Œ.v1; p1/ ı � � � ı .vk; pk/�; v/ j Œ.v1; p1/ ı � � � ı .vk; pk/� 2 ��; v 2 Cvi g;
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where i D 1; : : : ; k. Note that here, we index by the prime pi instead, as there is no particular ordering
to the atomic split polynomials in the composition. Indeed, the orthogonal complement of the sum
�p1;n ˚ � � � ˚ �pk ;n is the bundle with total space

.�p1;n ˚ � � � ˚ �pk ;n/?

D f .Œ.v1; p1/ ı � � � ı .vk; pk/�; v/ j Œ.v1; p1/ ı � � � ı .vk; pk/� 2 ��; v 2 .Cv1 ˚ � � � ˚ Cvk/?
g:

Remark 5.2.2. We call �� the maximal anti-diagonal because there are subspaces of A.n/d consisting
of normal form factorisations where only some of the atomic maps are in orthogonal directions. These
maps still commute, but only past each other, so that we can have situations where v1 ? v2, v2 ? v3,
but v3 6? v1, and therefore

v1 ı v2 ı v3 D v2 ı v1 ı v3 ¤ v2 ı v3 ı v1:

In ��, all atomic maps commute, so the commutativity of the maps is “maximal” in this sense.

Theorem 5.2.3. Let �� be the maximal anti-diagonal of A.n/d , where d D p1 � � �pk is a product of
distinct primes. Then there is a vector bundle isomorphism

V�j�� Š �˝p1

p1;n ˚ � � � ˚ �˝pk
pk ;n ˚ .�p1;n ˚ � � � ˚ �pk ;n/?:

Proof. We consider the restriction of the principal U.n C 1/-bundle � W SP.n/ ! A.n/ to the
anti-diagonal ��. The total space over �� is the preimage

SP.n/�
d D fAı.v1; p1/ı� � �ı.vk; pk/ j A 2 U.nC1/; v1; : : : ; vk 2 S2nC1; vi ? vj for all i ¤ j g:

We begin by constructing a model for SP.n/�
d

to gain a better understanding of its structure. Referring
back to Proposition 3.2.2 (Commutativity of atomic split polynomials), commutativity of the atomic
split polynomials in the normal form factorisation of f 2 SP.n/�

d
allows us to write

f D A ı .v1; p1/ ı � � � ı .vk; pk/

for A 2 U.nC 1/, where we additionally impose the condition that the ordering of the prime degrees
in the composition must be .p1; : : : ; pk/ as written above. Under this condition, the normal form
representation is unique up to the following relation (c.f. relation 6 in Relations in SP.n/):

A ı .v1; p1/ ı � � � ı .vk; pk/ D AA
�

p1�1

k
v1

� � �A
�

pk�1

1
vk

ı .�1v1; p1/ ı � � � ı .�kvk; pk/

for all .�1; : : : ; �k/ 2 T k D .S1/�k. Let ��
L.d1; : : : ; dk/ be the subspace of the product L2nC1

d1
�

� � � �L2nC1
dk

consisting of elements .Œv1�; : : : ; Œvk�/ satisfying vi ? vj for all i ¤ j , which we refer to
as the anti-diagonal of L2nC1

d1
� � � � � L2nC1

dk
. Write ��

L D ��
L.p1 � 1; : : : ; pk � 1/. Then SP.n/�

d

can be modelled as the twisted balanced product

SP.n/�
d Š U.nC 1/ �

T k
��

L ´
U.nC 1/ ���

L

T k
;

where the T k-action on ��
L is given by

.�1; : : : ; �k/ � .A; v1; : : : ; vk/ D
�
AA

�
p1�1

k
v1

� � �A
�

pk�1

1
vk

; �1v1; : : : ; �kvk

�
:
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By construction, SP.n/�
d

has a left U.nC 1/-action restricted from SP.n/, being the preimage of
��. However, the right U.nC 1/-action also stabilises SP.n/�

d
, for we have the equality

.v1; p1/ ı � � � ı .vk; pk/ ı A D A ı .A�v1; p1/ ı � � � ı .A�vk; pk/

for all A 2 U.nC 1/ by relation 5 of Relations in SP.n/, it remains that A�vi ? A�vj for all i ¤ j

because A is unitary. We now describe these actions on the homeomorphic space U.nC 1/ �T k ��
L:

1. The left action, corresponding to pre-composition, is given by

U.nC 1/ � .U.nC 1/ �T k ��
L/ �! U.nC 1/ �T k ��

L

.g; ŒA; v1; : : : ; vk�/ 7�! ŒgA; v1; : : : ; vk�:

The quotient of U.nC 1/ �T k ��
L by this action is �� Š ��

CP n , and the quotient map is

� W U.nC 1/ �T k ��
L �! ��

CP n

ŒA; v1; : : : ; vk� 7�! .Œv1�; : : : Œvk�/:

Concretely, � is the assignment of a split polynomial f 2 SP.n/�
d

to the collection of hyper-
planes in its set of critical points in the domain, the irreducible components of ZŒf � � CnC1

(c.f. equation (3.1)).

2. The right action, corresponding to post-composition, is given by

.U.nC 1/ �T k ��
L/ � U.nC 1/ �! U.nC 1/ �T k ��

L

.ŒA; v1; : : : ; vk�; g/ 7�! ŒgA; g�1v1; : : : ; g�1vk�:

The quotient of U.nC 1/ �T k ��
L by this action is also �� Š ��

CP n , and the quotient map is

� W U.nC 1/ �T k ��
L �! ��

CP n

ŒA; v1; : : : ; vk� 7�! .ŒAv1�; : : : ŒAvk�/:

Concretely, � is the assignment of a split polynomial f 2 SP.n/�
d

to the collection of hyper-
planes in its set of critical values in the codomain.

We will see that the fibre of the right action defines a restriction of the U.nC 1/-bundle under the left
action.

Let e1; : : : ; enC1 be the standard basis of CnC1, and let F D ��1.Œe1�; : : : ; Œek�/ denote the fibre of
� . Explicitly,

F D f ŒA; �1A�e1; : : : ; �kA�ek� j A 2 U.nC 1/; �1; : : : ; �k 2 S1
g:

This corresponds to the collection of split polynomials in SP.n/�
d

whose set of critical values is the
union of the lines Cei � CnC1, i D 1; : : : ; k. There is the following commutation relation:

AA�
�A�ei

D A�
ei

A;

and A�1
v1

and A�2
v2

commute if v1 ? v2. So, in fact,

ŒA; �1A�e1; : : : ; �kA�ek� D
�
A�1�p1

e1
: : : A�1�pk

ek
A; A�e1; : : : ; A�ek

�
:
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We now remark upon the following important fact: expressed in matrix form, A�ei is precisely the
conjugate of the i th row of A. Therefore, writing vi D A�ei 2 CnC1 for i D 1; : : : ; n C 1, each
element ŒA; �1A�e1; : : : ; �kA�ek� 2 F may be expressed as

ŒA; �1A�e1; : : : ; �kA�ek� D

2666666664

0BBBBBBBB@

vt
1
:::

vt
k

vt
kC1
:::

vt
nC1

1CCCCCCCCA
; �1v1; : : : ; �kvk

3777777775

D

2666666664

0BBBBBBBB@

�1�p1vt
1

:::

�1�pk vt
k

vt
kC1
:::

vt
nC1

1CCCCCCCCA
; v1; : : : ; vk

3777777775
D

�
A�1�p1

e1
: : : A�1�pk

ek
A; A�e1; : : : ; A�ek

�
;

where we have identified elements of CnC1 with column vectors and the symbol0B@ vt
1
:::

vt
nC1

1CA
denotes the .nC 1/ � .nC 1/ matrix whose rows are the transposes of the vectors v1; : : : ; vnC1.

To understand the ��
L component of the fibre F , let us consider it in isolation. Fix a choice of or-

thonormal vectors vkC1; : : : ; vnC1 2 S2nC1, and for brevity we denote by F.w1; : : : ; wk; �1; : : : ; �k/

the element 2666666664

0BBBBBBBB@

wt
1

:::

wt
k

vt
kC1
:::

vt
nC1

1CCCCCCCCA
; �1w1; : : : ; �kwk

3777777775
2 F;

where together, w1; : : : ; wk; vkC1; : : : ; vnC1 form an orthonormal basis of CnC1. We have the relation:

F.w1; : : : ; wk; �1; : : : ; �k/ D F.�
p1�1
1 w1; : : : ; �

pk�1

k
wk; 1; : : : ; 1/

for all .�1; : : : ; �k/ 2 T k. Consequently, we can construct a mapping defined in the following way.
Let the symbol Lp.w; �/ denote the set

Lp.w; �/ D f ��w j �1�pw D ��w; � 2 S1
g D f ��w j �p

D ��1; � 2 S1
g:
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This set defines element of L2nC1
p . We now have a mapping into the anti-diagonal ��

L.p1; : : : ; pk/:

F.w1; : : : ; wk; �1; : : : ; �k/ 7�! .Lp1
.w1; �1/; : : : ; Lpk

.wk; �k// 2 ��
L.p1; : : : ; pk/: (5.1)

This mapping is injective: to see this, suppose that

f ��w j �1�pw D ��w; � 2 S1
g D f �0�0w0

j �01�pw0
D �0�0w0; �0

2 S1
g;

which means that there exist �; �0 2 S1 such that

�1�pw D ��w D �01�pw0
D �0�0w0:

And so
Lp.w; �/ D Lp.�1�pw; ��/ D Lp.�01�pw0; �0�0/ D Lp.w0; �0/:

Applying this to all Lpi
, i D 1; : : : ; k, at once, we obtain injectivity of (5.1). Now letting vkC1; : : : ; vnC1 2

S2nC1 to vary, we find that there is a homeomorphism induced by (5.1) of F onto the subspace of the
product

L2nC1
p1

� � � � � L2nC1
pk

� S2nC1
� � � � � S2nC1„ ƒ‚ …

n C 1 � k times

where the elements are represented by nC1 vectors w1; : : : ; wk; vkC1; : : : ; vnC1 that form an orthonor-
mal basis of CnC1. This subspace is a subbundle of the frame bundle of the claimed vector bundle
�

˝p1
p1;n ˚ � � � ˚ �

˝pk
pk ;n ˚ .�p1;n ˚ � � � ˚ �pk ;n/?, where the first k vectors of the frame wi , i D 1; : : : ; k,

each lie in their respective subbundles �
˝pi
pi ;n � �, i D 1; : : : ; k, (see Lemma 2.4.1) and the last

nC 1� k vectors vi , i D kC 1; : : : ; nC 1, lie in the orthogonal complement .�p1;n˚ � � � ˚ �pk ;n/?.
We will use the notation Œw1; : : : ; wk; vkC1; : : : ; vnC1� to denote an element of the fibre F .
Remark 5.2.4. If the L2nC1

pi
factors were instead spheres S2nC1, then the subspace of nC 1 vectors

forming an orthonormal basis of CnC1 is the frame bundle of the trivial bundle

F.CnC1/ Š F.�p1;n ˚ � � � ˚ �pk ;n ˚ .�p1;n ˚ � � � ˚ �pk ;n/?/

over the anti-diagonal. The lens space factors correspond to the twisting introduced by the tensor
powers.

Now, F no longer has a left U.nC1/-action as it is not a stable subspace of SP.n/�
d

. But the stabiliser
of F under the left U.n C 1/-action is in fact the subgroup U.1/�k � U.n C 1 � k/ � U.n C 1/

corresponding to those matrices which fix each line Œei � 2 CP n, i D 1; : : : ; k. To see this, let
g 2 U.n C 1/ such that g � ŒA; v1; : : : ; vk� 2 F for all ŒA; v1; : : : ; vk� 2 F . This is precisely the
condition that

�.ŒgA; v1; : : : ; vk�/ D .ŒgAv1�; : : : ; ŒgAvk�/ D .Œge1�; : : : ; Œgek�/
Š
D .Œe1�; : : : ; Œek�/:

So the left U.nC 1/-action on SP.n/�
d

restricts to a left U.1/�k �U.nC 1� k/-action on F , whence
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we get a commutative diagram of pointed sets

U.1/�k � U.nC 1 � k/ U.nC 1/ ��
CP n

F SP.n/�
d

��
CP n

�� �� �:

 - !

 
-

!

 �

 
-

!

 

 

 

 

 - !

 

��

 ��

 ��

 �

 

  

 

 �

The vertical bundle F ! �� on the left is a reduction of the structure group U.nC 1/ of the middle
vertical bundle SP.n/�

d
! �� to U.1/�k �U.nC 1� k/. Indeed, by Lemma 2.1.8 (Induced bundle),

we have U.nC 1/-bundle the isomorphism

F �
U.1/�k�U.nC1�k/

U.nC 1/ Š SP.n/�
d :

On the level of associated vector bundles, the reduction means that V�j�� decomposes into the direct
sum of k line bundles, and another rank n C 1 � k bundle over ��. We have already seen this
decomposition when we identified F as being homeomorphic to a subbundle of the frame bundle
F.�

˝p1
p1;n ˚ � � � ˚ �

˝pk
pk ;n ˚ .�p1;n˚ � � � ˚ �pk ;n/?/ in the previous paragraph. What remains is to check

that the U.1/�k � U.nC 1 � k/-action on F is the correct one.
Let the elements of U.1/�k�U.nC1�k/ be denoted by .�1; : : : ; �k; h/, where �1; : : : ; �k 2 U.1/

and h 2 U.nC 1 � k/. We describe the action of U.1/�k � U.nC 1 � k/ on F :

1. The action of the U.nC 1 � k/ factor is given by

.1; : : : ; 1; h/ � Œw1; : : : ; wk; vkC1; : : : ; vnC1� D Œw1; : : : ; wk; .vkC1; : : : ; vnC1/ ı h�1�;

where the symbol .vkC1; : : : ; vnC1/ ı h�1 denotes the result of multiplying the matrix whose
columns are vkC1; : : : ; vnC1 by h�1 on the right. Geometrically, this action on a map f 2 F is
the U.nC 1� k/-action on the subspace of the codomain CnC1 orthogonal to Ce1˚ � � �˚Cek .

2. The action of the U.1/ factors is calculated explicitly as

.�1; : : : ; �k; 1/�F.w1; � � � ; wk; : : : ; �1; : : : ; �k/ D F.�1w1; � � � ; �kwk; : : : ; �1�1; : : : ; �k�k/:

Recalling the map (5.1) defined above, the U.1/-action corresponds to the action on each L2nC1
p

factor described by

� � f ��w j �p
D ��1; � 2 S1

g D f ��w j �p
D ��1��1; � 2 S1

g

D f��1=p��v j �p
D ��1; � 2 S1

g;

where ��1=p is any pth root of ��1 (since multiplication by ��1=p in the lens space does not
depend on this choice). Hence, using the notation Œw1; : : : ; wk; vkC1; : : : ; vnC1� described a
few paragraphs ago, for elements of F ,

.�1; : : : ; �k; 1/ � Œw1; : : : ; w1; vkC1; : : : ; vnC1� D Œ�
�1=p1

k
w1; : : : ; �

�1=pk

1 wk; vkC1; : : : ; vnC1�;
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where ��1=pi wi is well-defined because vi 2 L2nC1
pi

. Geometrically, this action on a map
f 2 F is the product of circle actions on each of the subspaces of the codomain CnC1 given by
the spans Cei , i D 1; : : : ; k.

From the above description, the action of U.1/�k � U.nC 1 � k/ on F is the same as the action
on the subbundle of the frame bundle F.�

˝p1
p1;n ˚ � � � ˚ �

˝pk
pk ;n ˚ .�p1;n ˚ � � � ˚ �pk ;n/?/ under our

homeomorphism, and hence they are isomorphic as U.1/�k � U.nC 1 � k/-bundles. Hence, we
obtain the desired isomorphism

V�j�� Š �˝p1

p1;n ˚ � � � ˚ �˝pk
pk ;n ˚ .�p1;n ˚ � � � ˚ �pk ;n/?:

Remark 5.2.5 (Maximal anti-diagonal when d D pk). We can define the maximal diagonal in the
case where d D pk is a power of a prime p. This would be the subspace of A.n/pk given by

��.n/=†k D f Œv1 ı � � � ı vk� j v1; : : : ; vk 2 S2nC1; vi ? vj for all i ¤ j g:

where all the atomic split polynomials are understood to have degree p. By Proposition 3.2.2
(Commutativity of atomic split polynomials), these maps all commute, but because every polynomial
has the same degree, we are no longer able to identify any ordering. This justifies our notation
��.n/=†k , because the anti-diagonal is homeomorphic to ��

CP n=†k , where ��
CP n is the anti-diagonal

of the product .CP n/�k, and the symmetric group †k acts on .CP n/�k by permuting the factors.
This action is free, and so there is a homotopy equivalence

��.n/=†k ' ��
CP n==†k

with the homotopy orbit space (c.f. Section 5.1). Taking the limit as n ! 1, the stable maximal
anti-diagonal

��==†k ´ lim
�!n

��.n/=†k

becomes homotopy equivalent to .CP 1/�k==†k.
The importance of the space .CP 1/�k==†k comes from the following. Inside of the unitary group

U.k/, there is the maximal torus T k consisting of the diagonal matrices. Its normaliser in U.k/ is a
semidirect product

Nk ´ NU.k/.T
k/ Š T k Ì †k:

Applying [CG21, Lemma 2.2] to the split short exact sequence

1 �! T k
�! Nk �! †k �! 1;

we obtain a homotopy equivalence of classifying spaces

BNk ' BT k==†k:

By functoriality of B and the fact that CP 1 is a BS1, the product .CP 1/�k is a model for the
classifying space BT k . What we conclude is that the stable maximal anti-diagonal for degree pk is a
model for the classifying space BNk.

Conjecture 5.2.6. In the notation of Remark 5.2.5, there is a homotopy equivalence Ap2 ' BN2,
where Ap2 denotes the stable degree-p2 A-space (see Definition 3.5.2).
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5.2.2 The bundle V� over the atomic A-space
Recall the atomic split polynomial space SP.n/at, the subspace of SP.n/ consisting of the atomic split
polynomials and unitary maps:

SP.n/at
D fA ı .v; d/ j A 2 U.nC 1/; v 2 S2nC1; d 2 Z>0 g:

We remark that we do not need to write Aı .v; d/ıB as we did in Definition 3.1.2 due to the existence
of the normal form (see Definition 3.1.6). The atomic A-space A.n/at is the image of SP.n/at in
A.n/, and the spaces SP.n/at

d
and A.n/at

d
denote the degree-d components of SP.n/at and A.n/at

respectively.
Remark 5.2.7. When d is a prime, SP.n/at

d
and SP.n/d coincide, with the same holding for A.n/at

d

and A.n/d .
In light of Remark 3.4.7 (The atomic A-space as complex projective space), A.n/at

d
Š CP n. Let

n ! CP n denote the tautological line bundle over CP n, and ?
n ! CP n its orthogonal complement.

The homeomorphism A.n/at
d
Š CP n gives us a tautological line bundle and its orthogonal complement

over A.n/at
d
, which we also denote by n and ?

n respectively by abuse of notation.
Theorem 5.2.8. There is a vector bundle isomorphism V�jSP.n/at

d
Š ˝d

n ˚ ?
n .

Proof. By Remark 5.2.7, this theorem is a corollary of Theorem 5.2.3 when d D p is prime, for the
maximal anti-diagonal of A.n/p is the whole space A.n/p.

When d is not a prime, the proof of Theorem 5.2.3 generalises in the atomic case due to the
following observation. Restricted to over the atomic A-space, the structure of the split polynomials
simplifies dramatically: a map f 2 SP.n/at

d
has a normal form consisting of a single atomic spit

polynomial
f D A ı .v; d/;

for some A 2 U.nC 1/ and v 2 S2nC1. Hence, the proof for Theorem 5.2.3 specialised to A.n/p for
p prime applies to A.n/at

d
after replacing all instances of p with d .



6 The cohomology of the A-space
This chapter is entirely dedicated to computing the cohomology of the A-space in various degrees,
and especially for the two cases: when d D p2 is a square of a prime, and when d D pq the product
of two distinct primes. We also prove some results about the cohomology of the A-space stably.
Notation 6.0.1. Throughout this chapter, the cohomology of a space X , denoted by H i.X/, is
implicitly assumed to have Z-coefficients unless specified otherwise.

6.1 The case of d D p, p prime
We briefly state the case when d D p is a prime for completeness.
Theorem 6.1.1 (The cohomology of A.n/p). The cohomology ring of A.n/p is the truncated polyno-
mial ring ZŒc1�=.cnC1

1 / [Hat01, Theorem 3.19].

Proof. In Section 3.4.3, we have seen that A.n/p Š CP n. Therefore the cohomology of A.n/p is
isomorphic to the cohomology of CP n.

6.2 The case of d D p2, p prime
This section deals with the cohomology of the degree-p2 A-space. Here is our main result.
Theorem 6.2.1 (The rational cohomology of A.n/p2). The rational cohomology groups of A.n/p2

are given by

H i.A.n/p2IQ/ Š

8̂̂̂<̂
ˆ̂:

Q˚rj ; for i D 2j , where 0 6 j 6 n � 1,
Q˚.rj C1/; for i D 2j , where n 6 j 6 2n � 1,
Q; for i D 2j , where j D 2n,
0; otherwise,

where rj , j 2 Z, are the coefficients of the q-binomial coefficient
C1X

j D�1

rj qj
D

�
nC 1

2

�
q

´
.1 � qnC1/.1 � qn/

.1 � q/.1 � q2/
2 ZŒq�: (6.1)

We will build up to this theorem with a sequence of lemmas computing the cohomology of various
subspaces of A.n/p2 .

In Section 3.4.4, we described a model for the degree-p2 component of the A-space. In particular,
by Corollary 3.4.1, A.n/p2 is homeomorphic to the quotient of twisted balanced product zA.n/p2 D

CP n z�S1 L2nC1
p�1 (see equation (3.2)) by the equivalence relation �p2 . We analyse the stratification

structure of A.n/p2 to create a Mayer-Vietoris sequence.
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Claim 6.2.2. The anti-diagonal �� is a deformation retract of the complement of the diagonal
zA.n/p2 n� via the Gram-Schmidt process.

Proof. For Œv; w� 2 CP n z�S1 L2nC1
p�1 such that v ¬ w, v admits an orthogonal decomposition

v D vk C v?; where vk 2 Cw; v? 2 .Cw/?
n f0g:

Define the deformation retraction
rt W

zA.n/p2 n� �! zA.n/p2 n�

Œv; w� 7�!

�
.1 � t /vk C v?

k.1 � t /vk C v?k
; w

�
:

To see that rt is well-defined, we check the following two things:
1. Let �0 denote the preimage of � in CP n � L2nC1

p�1 . Consider the map on the product

.CP n � L2nC1
p�1 / n�0 �! .CP n z�S1 L2nC1

p�1 / n�

Œv; w� 7�!

�
.1 � t /vk C v?

k.1 � t /vk C v?k
; w

�
:

To see that this map is well-defined, consider the pair .�v; �w/ 2 S2nC1 � S2nC1 where
�; � 2 S1 with �p�1 D 1. Since Cw D C�w, �v has orthogonal decomposition

�v D �vk C �v?; �vk 2 C�w; �v? 2 .C�w/?
n f0g:

From this, we see that�
.1 � t /�vk C �v?

k.1 � t /�vk C �v?k
; �w

�
D

�
.1 � t /vk C v?

k.1 � t /vk C v?k
; w

�
:

2. To see if we can then descend to the quotient CP n z�S1 L2nC1
p�1 D S1n.CP n � L2nC1

p�1 /, now
consider the pair .A

�1�p

w v; �w/ for some � 2 S1. We still have that Cw D C�w, but now
A

�1�p

w v has orthogonal decomposition

A�1�p

w v D A�1�p

w .vk C v?/ D �1�pvk C v?; �1�pvk 2 C�w; v? 2 .C�w/?
n f0g:

Indeed,�
.1 � t /�1�pvk C v?

k.1 � t /�1�pvk C v?k
; �w

�
D

�
A

�1�p

w ..1 � t /vk C v?/

k.1 � t /vk C v?k
; �w

�
D

�
.1 � t /vk C v?

k.1 � t /vk C v?k
; w

�
:

So rt is well-defined. This shows that �� is a deformation retract of zA.n/p2 n�.

Manifold structure of zA.n/p2 . Recall that zA.n/p2 D CP n z�S1 L2nC1
p�1 is the quotient S1n.CP n �

L2nC1
p�1 / of the free S1-action on CP n �L2nC1

p�1 . The action is automatically proper by compactness of
S1. So zA.n/p2 is a smooth manifold with (real) dimension

dimR CP n
z�

S1
L2nC1

p�1 D dimR CP n
C dimR L2nC1

p�1 � dimR S1
D 4n:

The subspace � is a smooth submanifold of zA.n/p2 of codimension 2n. It has a tubular neighbourhood
N diffeomorphic to the disc bundle D�.�/ of the normal bundle �.� ,! zA.n/p2/. The radius of N

can be taken to be small enough such that it is disjoint from ��. So we identify N with its image in
the quotient A.n/p2 .
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� ��=Z2

� �

/ 

!@N Š S�.��/

N

Figure 6.1: Schematic diagram of A.n/p2 .

Constructing the Mayer-Vietoris sequence. Consider the cover of A.n/p2 consisting of N and
the image of zA.n/p2 n�. We note the following:

• As a tubular neighbourhood, N deformation retracts onto � Š CP n.

• zA.n/p2 n� deformation retracts onto �� in zA.n/p2 by Claim 6.2.2. So its image deformation
retracts onto ��=Z2 in A.n/p2 .

• By choosing N small enough, their intersection can be made to deformation retract onto the
boundary of N . By construction of the tubular neighbourhood, @N is diffeomorphic to the
sphere bundle S�.�/. Since � has codimension 2n, the normal bundle �.�/ has (real) rank
2n, and therefore its sphere bundle S�.�/ is a S2n�1-bundle.

The resulting Mayer-Vietoris sequence is the following:

0 H 0.A.n/p2/ H 0.�/˚H 0.��=Z2/ H 0.S�.�//

H 1.A.n/p2/ H 1.�/˚H 1.��=Z2/ H 1.S�.�//

H 2.A.n/p2/ H 2.�/˚H 2.��=Z2/ H 2.S�.�//

� � � :

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!  

!  

!

(6.2)

The remaining part of this section will be spent calculating the groups in this sequence.

Calculating the Mayer-Vietoris sequence
Lemma 6.2.3. The cohomology of � is isomorphic to the cohomology of CP n, given by

H i.�/ Š

(
Z; for i even and 0 6 i 6 2n,
0; otherwise.
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Proof. Because � is identified with the diagonal �CP n � CP n � CP n, we have a homeomorphism
� Š CP n. The cohomology ring of CP n is the truncated polynomial ring ZŒc1�=.cnC1

1 / where
c1 D c1.n/ 2 H 2.CP n/ is the 1st Chern class of the tautological line bundle n ! CP n [MS74,
Theorem 14.4].

Lemma 6.2.4. The cohomology of ��=Z2 is

H i.��=Z2/ Š

8̂̂̂̂
<̂
ˆ̂̂:

Z˚rj ; for i D 2j , where j D 0,

Z˚rj ˚ Z˚rj �1

2 ; for i D 2j , where j D 1; 2; : : : ; 2n � 2,

Z˚rj �1

2 ; for i D 2j , where j D 2n � 1,
0; otherwise,

where rj are integers defined in equation (6.1).
There is a fibre bundle CP 1 ! �� ! G2.CnC1/ where the projection map �� ! G2.CnC1/

given by Œv; w� 7! spanCfv; wg. Quotienting by the Z2 action on the diagonal gives rise to the fibre
bundle RP 2 ! ��=Z2 ! G2.CnC1/. These bundles fit into the following commutative diagram:

CP 1 RP 2

�� ��=Z2

G2.CnC1/ G2.CnC1/:

 

!

 
-

!

 
-

!

 

!

 �  �

 

   

The cohomology of ��=Z2 can be computed using the Serre spectral sequence applied to the fibre
bundle above. Because the base space G2.CnC1/ is simply connected, the spectral sequence has
untwisted coefficients.
Lemma 6.2.5. The cohomology groups of G2.CnC1/ are

H i.G2.CnC1// Š

(
Z˚rj ; for i D 2j , where 0 6 j 6 2n � 2,
0; otherwise,

where rj are integers defined in equation (6.1).

Remark 6.2.6. As a ring, the cohomology of G2.CnC1/ is a quotient of the polynomial ring ZŒc1; c2� by
an ideal I [MS74, Theorem 14.5]. The two generators correspond to c1 D c1.!2/ 2 H 2.G2.CnC1//

and c2 D c2.!2/ 2 H 4.G2.CnC1//, the first two Chern classes of the tautological rank 2 bundle
!2 ! G2.CnC1/. The ideal I is defined such that the Cartan formula [MS74, Formula 14.7]

1 D c.!2
˚ .!2/?/ D c.!2/ c..!2/?/

holds in the quotient ZŒc1; c2�=I .
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Proof of Lemma 6.2.5. The cohomology groups of the complex Grassmannian are calculated as
follows. To each plane … 2 G2.CnC1/ we associate the reduced row echelon form of a matrix
A… 2 Mat2�.nC1/.C/ whose rows span …. The map … 7! rref A… is well-defined by [Hat17, Section
1.2], and we obtain a CW-structure on G2.CnC1/ with one cell e.�/ of dimension 2..�1�1/C.�2�2//

for each Schubert symbol � D .�1; �2/, 1 6 �1 < �2 6 nC 1. For example:

• When n D 1, there is only one Schubert symbol .1; 2/, giving rise to a cell of dimension 0.

• When n D 2, there are three Schubert symbols .1; 2/, .1; 3/, .2; 3/, giving rise to cells of
dimension 0, 2, 4.

• When n D 3, there are six Schubert symbols .1; 2/, .1; 3/, .1; 4/, .2; 3/, .2; 4/, .3; 4/, giving
rise to cells of dimension 0, 2, 4, 4, 6, 8.

• When n D 4, there are ten Schubert symbols .1; 2/, .1; 3/, .1; 4/, .1; 5/, .2; 3/, .2; 4/, .2; 5/,
.3; 4/, .3; 5/, .4; 5/, giving rise to cells of dimension 0, 2, 4, 6, 4, 6, 8, 8, 10, 12.

• In general, there are
�

nC1

2

�
Schubert symbols, giving rise to rj cells of dimension 2j for each

0 6 j 6 2n � 2.

Because all cells are of even dimension, cellular cohomology can be used to see that the cohomology
groups are free with rank equal to the number of cells of the corresponding dimension.

To calculate the ring structure, a proof is found in [MS74, Theorem 14.5].
We now return to the spectral sequence.

Proof of Lemma 6.2.4. The E2 page of the Serre spectral sequence for the fibre bundle RP 2 !

��=Z2 ! G2.CnC1/ is given by:

s

t

0

1

2

0 2 4 � � � 4n � 6 4n � 4

Z˚r0

0

Z˚r0

2

Z˚r1

0

Z˚r1

2

Z˚r2

0

Z˚r2

2

� � �

� � �

� � �

Z˚r2n�3

0

Z˚r2n�3

2

Z˚r2n�2

0

Z˚r2n�2

2

There are no non-zero differentials possible because all non-zero groups are concentrated in the even
dimensions. Because Z˚rj is free for all j , there are no extension problems. So the group structure of
H i.��=Z2/ coincides with its associated graded, and we conclude that

H i.��=Z2/ Š

8̂̂̂̂
<̂
ˆ̂̂:

Z˚rj ; for i D 2j , where j D 0,

Z˚rj ˚ Z˚rj �1

2 ; for i D 2j , where j D 1; 2; : : : ; 2n � 2,

Z˚rj �1

2 ; for i D 2j , where j D 2n � 1,
0; otherwise,

as desired.
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Lemma 6.2.7. The cohomology of S�.�/ is

H i.S�.�// Š

8̂̂̂<̂
ˆ̂:

Z; for i D 0; 2; : : : ; 2n � 2,
Ze; for i D 2n,
Z; for i D 2nC 1; 2nC 3; : : : ; 4n � 1,
0; otherwise,

where e 2 Z corresponds to the Euler class of �.�/ under the isomorphism H 2n.�/ Š Z.

Proof. We have the sphere bundle S2n�1 ! S�.�/ ! �, to which we apply the Serre spectral
sequence. Since � Š CP n is simply connected, the spectral sequence has untwisted coefficients. The
E2 page is given by:

s

t

0

:::

2n � 1

0 2 4 � � � 2n � 2 2n

Z

Z

Z

Z

Z

Z

� � �

� � �

Z

Z

Z

Z 

!

eY

The only possible non-zero differential shown in the diagram above is d
0;2n�1
2n W E

0;2n�1
2n ! E

2n;0
2n on

the E2n page. It is the Gysin homomorphism, given by cupping with the Euler class e D e.�.�// 2

H 2n.�/ [MS74, Theorem 12.2]. The resulting E1 page is:

s

t

0

:::

2n � 1

0 2 4 � � � 2n � 2 2n

Z

0

Z

Z

Z

Z

� � �

� � �

Z

Z

Ze

Z

(6.3)

Each group Z along the bottom row is free, so we have no extension problems. Hence, the group
structure of H i.S�.�// coincides with its associated graded, from which we yield the desired
result.
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Remark 6.2.8 (Boundary homomorphisms). By [McC01, Theorem 5.9], the boundary terms E i;0
1

of the spectral sequence above (6.3) are the images of the boundary homomorphisms im.H i.�/!

H i.S�.�/// induced by the projection map S�.�/ ! �. These boundary homomorphisms cor-
respond to the maps H i.CP n/ ! H i.S�.�// in the Mayer-Vietoris sequence for A.n/p2 . Since
H i.S�.�// D E i;0

1 for 0 6 i 6 2n, H i.CP n/! H i.S�.�// is surjective in this range.

Proof of Theorem 6.2.1. The above lemmas allow us to fill in the groups of the Mayer-Vietoris sequence
(6.2). We find that the sequence has two distinct portions:

1. In dimensions 0 6 i 6 2n, we have

� � � 0

H 2j .A.n/p2/ Z˚ Z˚rj ˚ Z˚rj �1

2 H 2j .S�.�//

H 2j C1.A.n/p2/ 0 � � � :

 

!

 - !

 �

 - !

 

!

 

!  

!

0

The boundary homomorphism (see Remark 6.2.8) gives surjectivity onto H 2j .S�.�//, which
forces H 2j C1.A.n/p2/ D 0. This yields short exact sequences

0 �! H 2j .A.n/p2/ �! Z˚ Z˚rj ˚ Z˚rj �1

2 �! H 2j .S�.�// �! 0

for all 0 6 j 6 n.
When j < n, H 2j .S�.�// Š Z and so the short exact sequence is

0 �! H 2j .A.n/p2/ �! Z˚ Z˚rj ˚ Z˚rj �1

2 �! Z �! 0:

Because Z is free, this short exact sequence is split. By the structure theorem of finitely
generated abelian groups, H 2j .A.n/p2/ Š Z˚rj ˚ Z˚rj �1

2 . Tensoring with Q, we find that
H 2j .A.n/p2IQ/ Š Q˚rj .
In dimension 2n, H 2n.S�.�// Š Ze and so the short exact sequence is

0 �! H 2n.A.n/p2/ �! Z˚ Z˚rn ˚ Z˚rn�1

2 �! Ze �! 0:

Such a short exact sequence is not split in general. We can make the calculation rationally by
tensoring with Q to find that H 2n.A.n/p2IQ/ Š Q˚.rnC1/.

2. In dimensions 2nC 1 6 i 6 4n, we have

� � � 0 Z

H 2j .A.n/p2/ Z˚rj ˚ Z˚rj �1

2 0

H 2j C1.A.n/p2/ 0 � � � :

 

!

 

!

 �  

!

 

!

 

!

 -

!  

!
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Each H 2j C1.A.n/p2/ is sandwiched between two 0s, forcing H 2j C1.A.n/p2/ D 0. We also
have short exact sequences

0 �! Z �! H 2j .A.n/p2/ �! Z˚rj ˚ Z˚rj �1

2 �! 0:

for all nC 1 6 j 6 2n. Tensoring with Q, we find that H 2j .A.n/p2IQ/ Š Q˚.rj C1/.

3. All terms are zero in dimensions i > 4n.

We restate the result that we have just calculated:

H i.A.n/p2IQ/ Š

8̂̂̂<̂
ˆ̂:

Q˚rj ; for i D 2j , where 0 6 j 6 n � 1,
Q˚.rj C1/; for i D 2j , where n 6 j 6 2n � 1,
Q; for i D 2j , where j D 2n,
0; otherwise.

6.3 The stable cohomology of Ap2

In the proof for Theorem 6.2.1 (The rational cohomology of A.n/p2), we were able to compute
H 2j .A.n/p2/ integrally for j < n. In this section, we extend this result to the stable A-space of
degree p2.
Theorem 6.3.1 (Stable cohomology of Ap2). The inclusion A.n/p2 ,! A.nC 1/p2 induces isomor-
phisms

H i.A.n/p2/ Š H i.A.nC 1/p2/

for all i 6 2n � 2. Furthermore, the integral cohomology groups of Ap2 are given by

H i.Ap2/ Š

8̂<̂
:

Z˚.j C1/
˚ Z˚j

2 ; for i D 4j ,

Z˚.j C1/
˚ Z˚.j C1/

2 ; for i D 4j C 2,
0; otherwise.

Theorem 6.3.2 (Rational stable cohomology of Ap2). The rational cohomology groups of Ap2 are
given by

H i.Ap2IQ/ Š

(
Q˚.j C1/; for i D 2j ,
0; otherwise.

Notation 6.3.3. For the rest of this section, we denote the diagonal and anti-diagonal of A.n/p2 by
�.n/ and ��.n/=Z2 respectively.

Lemma 6.3.4. The inclusions �.n/ ,! �.nC 1/ induce isomorphisms

H i.�.nC 1// Š H i.�.n//

for all i 6 2n.
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Proof. Let �.n/ � CP n � CP n be the diagonal of the product. We have the homeomorphisms
�.n/ Š �.n/ Š CP n which fit into the commutative diagram

CP n CP nC1

�.n/ �.nC 1/

�.n/ �.nC 1/

A.n/p2 A.nC 1/p2 :

 - !

 

!

Š

 - !

 

!

Š

 

!
Š

 - !

 
-

!

 

!

Š

 
-

!

 - !

The inclusions CP n ,! CP nC1 induce isomorphisms

H i.CP nC1/ Š H i.CP n/

for all i 6 2n. In particular, the cohomology ring of CP 1 is the polynomial ring ZŒc1� where
c1 D c1./ 2 H 2.CP 1/ is the 1st Chern class of the tautological line bundle  ! CP 1. Hence,
the inclusions �.n/ ,! �.nC 1/ also induce isomorphisms

H i.�.nC 1// Š H i.�.n//

for all i 6 2n.

Lemma 6.3.5. The inclusion ��.n/=Z2 ,! ��.nC 1/=Z2 induces isomorphisms

H i.��.nC 1/=Z2/ Š H i.��.n/=Z2/

for all i 6 2n.

Proof. The inclusion CnC1 ,! CnC2 induces inclusions ��.n/=Z2 ,! ��.nC1/=Z2 and G2.CnC1/ ,!

G2.CnC2/. These inclusions fit into the fibre bundle commutative diagram

RP 2 RP 2

��.n/=Z2 ��.nC 1/=Z2

G2.CnC1/ G2.CnC2/:

 

  

 

 
-

!

 
-

!

 - !

 �  �

 - !

Top horizontal map induces an isomorphism on all cohomology groups, while the bottom horizontal
map induces isomorphisms

H i.G2.CnC2// Š H i.G2.CnC1//
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for all i 6 2n. Denote the E2 page of the Serre spectral sequence for RP 2 ! ��.n/=Z2 ! G2.CnC1/

by E2.n/, and for RP 2 ! ��.nC 1/=Z2 ! G2.CnC2/ by E2.nC 1/. We have by naturality of the
Serre spectral sequence induced natural isomorphisms

E
s;t
2 .nC 1/ Š E

s;t
2 .n/

for all p C q 6 2n. From the calculation made in the proof of Lemma 6.2.4, the spectral sequences
degenerate on the E2 page, and therefore the inclusion ��.n/=Z2 ,! ��.n C 1/=Z2 induces
isomorphisms

H i.��.nC 1/=Z2/ Š H i.��.n/=Z2/

for all i 6 2n.

Lemma 6.3.6. The inclusion S�.�.n// ,! S�.�.nC 1// induces isomorphisms

H i.�.nC 1// Š H i.�.n//

for all i 6 2n � 2.

Proof. The argument proceeds as in the proof of Lemma 6.3.5. There are induced inclusions �.n/ ,!

�.nC 1/ and S�.�.n// ,! S�.�.nC 1//, yielding the fibre bundle commutative diagram

S2n�1 S2nC1

S�.�.n// S�.�.nC 1//

�.n/ �.nC 1/:

 - !

 
-

!

 
-

!

 - !

 �  �

 - !

Recalling that �.n/ Š CP n, the inclusions induce isomorphisms on the base

H i.�.nC 1// Š H i.�.n//

for all i 6 2n, and on the fibre
H i.S2nC1/ Š H i.S2n�1/

for all i 6 2n�2. The only non-zero differentials in the Serre spectral sequences for the above bundles
are the respective Gysin homomorphisms as seen in the proof of Lemma 6.2.7. These homomorphisms
do not hit anything in degree i 6 2n� 2. So by naturality, the inclusion S�.�.n// ,! S�.�.nC 1//

induces isomorphisms
H i.S�.�.nC 1/// Š H i.S�.�.n///

for all i 6 2n � 2.
The above lemmas provide us with a range in which the cohomology groups of the Mayer-Vietoris

sequence (6.2) are stable. Exploiting this, we return to Theorem 6.3.1.
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Proof of Theorem 6.3.1. Considering the Mayer-Vietoris sequences for A.n/p2 and A.nC 1/p2 , we
have by naturality a commutative diagram

:::
:::

H i�1.CP nC1/˚H i�1.��.nC 1/=Z2/ H i�1.CP n/˚H i�1.��.n/=Z2/

H i�1.S�.�.nC 1/// H i�1.S�.�.n///

H i.A.nC 1/p2/ H i.A.n/p2/

H i.CP nC1/˚H i.��.nC 1/=Z2/ H i.CP n/˚H i.��.n/=Z2/

H i.S�.�.nC 1/// H i.S�.�.n///;

:::
:::

 !  !

 

!
Š

 !  !

 

!
Š

 !  !

 

!

 !  !

 

!
Š

 !  !

 

!
Š

 !  !

where 4 out of 5 of the horizontal maps are isomorphisms for all i 6 2n� 2. Hence, by the 5-lemma,
H i.A.nC 1/p2/! H i.A.n/p2/ is an isomorphism for all i 6 2n � 2.

From the proof of Theorem 6.2.1, we have for each positive integer n, the integral cohomology of
A.n/p2 in the stable range i 6 2n � 2 is given by

H i.A.n/p2/ Š

(
Z˚.j C1/

˚ Z˚j
2 ; for i D 4j ,

Z˚.j C1/
˚ Z˚.j C1/

2 ; for i D 4j C 2.

Hence, by functoriality of cohomology and taking the limit as n!1, we find that

H i.Ap2/ Š

8̂<̂
:

Z˚.j C1/
˚ Z˚j

2 ; for i D 4j ,

Z˚.j C1/
˚ Z˚.j C1/

2 ; for i D 4j C 2,
0; otherwise,

as desired.

6.4 The case of d D pq, p, q distinct primes

This section deals with the cohomology of the degree-pq A-space. Here is our main result.
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Theorem 6.4.1 (The rational cohomology of A.n/pq). The rational cohomology groups of A.n/pq

are given by

H i.A.n/pqIQ/ Š

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Q; for i D 0; 1,
Q˚.sj �1/; for i D 2j , where 1 6 j < n,
Q˚sj ; for i D 2j , where j D n,
Q˚.sj C1/; for i D 2j , where n < j 6 2n,
0; otherwise,

where sj , j 2 Z are the coefficients of the polynomial
1X

j D�1

sj qj
D

�
nC 1

1

�2

q

´
.1 � qnC1/2

.1 � q/2
2 ZŒq�: (6.4)

We also have partial results for the integral cohomology of A.n/pq.
Theorem 6.4.2. The integral cohomology of A.n/pq in dimensions 0, 1, 2, and 3 is given by

H i.A.n/pq/ Š

8̂̂̂<̂
ˆ̂:

Z; for i D 0,
Z; for i D 1,
Z; for i D 2,
Z.p�1;q�1/; for i D 3,

where .p � 1; q � 1/ denotes the greatest common divisor of p � 1 and q � 1.

Notation 6.4.3. Within this section, we will let the symbols d and e denote p and q in some order.
That is to say, fd; eg D fp; qg.

Constructing the Mayer-Vietoris sequence. In the case of the degree-pq component of the A-
space, we have described a model for A.n/pq in Section 3.4.6 as the quotient

A.n/pq Š

zA.n/p;q q
zA.n/q;p

�pq

;

where the equivalence relation �pq is generated by the relations

zA.n/d;e 3 Œv; w� �pq Œw; v� 2 zA.n/e;d if v ? w or v k w:

The space zA.n/d;e is a smooth manifold of (real) dimension 2n (c.f. the p2 case in Section 6.2), and
the subspaces �d;e; ��

d;e
� zA.n/d;e are smooth submanifolds of codimension n and 1 respectively.

Hence, there exist tubular neighbourhoods zNd;e and zN �
d;e

of �d;e and ��
d;e

respectively. Now:

• Denote the image of zA.n/d;e q . zNe;d t zN
�
e;d

/ in the quotient A.n/pq by Nd;e. Then Nd;e a
regular neighbourhood of the image A.n/d;e of zA.n/d;e in A.n/pq.

• Np;q and Nq;p is a cover of A.n/pq, with � t �� � A.n/pq a deformation retract of their
intersection Np;q \Nq;p.
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�
��

�

�

A.n/q;pA.n/p;q

/.

. /

zN �
q;p

zN �
p;q

zNp;q
zNp;q

Figure 6.2: Schematic diagram of A.n/pq.

The resulting Mayer-Vietoris sequence is the following:

0 H 0.A.n/pq/ H 0.A.n/p;q/˚H 0.A.n/q;p/ H 0.�/˚H 0.��/

H 1.A.n/pq/ H 1.A.n/p;q/˚H 1.A.n/q;p/ H 1.�/˚H 1.��/

H 2.A.n/pq/ H 2.A.n/p;q/˚H 2.A.n/q;p/ H 2.�/˚H 2.��/

� � � :

 

!

 

!

 

!
‰

 

!

 

!
‰

 

!

 

!
‰

 

!  

!  

!

(6.5)
We denote the map H i.A.n/p;q/˚H i.A.n/q;p/! H i.�/˚H i.��/ by ‰.

Calculating the Mayer-Vietoris sequence
A point in A.n/d;e is an equivalence class Œv; w� representing normal form factorisations of a
degree-pq split polynomial with composition ordering .v; d/ ı .w; e/. Recalling that zA.n/d;e D

CP nz�S1L2nC1
e�1 , we consider the projection CP n�L2nC1

e�1 ! L2nC1
e�1 . Composing with L2nC1

e�1 ! CP n,
this descends to a well-defined map

� W CP n
z�

S1
L2nC1

e�1 �! CP n

on the quotient. (Note that the projection onto first factor CP n does not descend to the quotient.)
Through the homeomorphism A.n/d;e Š

zA.n/d;e, we replace the domain CP n z�S1 L2nC1
e�1 of � with

A.n/d;e; we continue to call this map � . Now, � is precisely the map Œv; w� 7! Œw�, which extracts
from a normal form factorisation the second map .w; e/. Therefore, we can identify the codomain
CP n with the degree-e A-space A.n/e.
Lemma 6.4.4. The map � is a CP n-bundle

CP n
�! A.n/d;e

�
��! A.n/e:
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Proof. Letting e0 denote the first basis vector of CnC1, the fibre of � is given by

��1.Œe0�/ D f Œv; �e0� j v 2 S2nC1; � 2 S1
g:

Now, noting that each equivalence class Œv; �e0� 2 CP n z�S1 L2nC1
e�1 consists of the elements

.ŒA�1�e

e0
v�; Œ��e0�/ 2 CP n � L2nC1

e�1 , where � 2 S1, there is a well-defined map

��1.Œe0�/ �! CP n

Œv; �e0� 7�! ŒA
�e�1

e0
v�:

We check that this is bijective. Each v 2 S2nC1 admits an orthogonal decomposition

v D vk C v? where vk 2 Ce0; v? 2 .Ce0/?:

So if ŒA
�e�1

1
e0

v1� D ŒA
�e�1

2
e0

v2�, then we must have �e�1
1 v1k D ��e�1

2 v2k and v1? D �v2? for some
� 2 S1. Therefore,

Œv1k C v1?; �1e0� D Œ�.�2=�1/e�1v2k C �v2?; �1e0� D Œv2k C v2?; �2e0�:

We conclude that ��1.Œe0�/! CP n is a homeomorphism, giving us the required bundle.

Lemma 6.4.5. The cohomology groups of A.n/d;e are

H i.A.n/d;e/ Š

(
Z˚sj ; for i D 2j , where 0 6 j 6 2n,
0; otherwise,

where sj are the integer defined in equation (6.4).

Proof. By Lemma 6.4.4, we have a CP n-bundle CP n ! A.n/d;e ! CP n via the homeomorphism
A.n/e Š CP n. We apply the Serre spectral sequence to this fibre bundle. Because the base CP n is
simply connected, the spectral sequence has untwisted coefficients. The E2 page is the following:

s

t

0

2

:::

2n

0 2 4 � � � 2n � 2 2n

Z

Zy

:::

Zyn

Zx

Zxy

:::

Zxyn

Zx2

Zx2y

:::

Zx2yn

� � �

� � �

: :
:

� � �

Zxn�1

Zxn�1y

:::

Zxn�1yn

Zxn

Zxny

:::

Zxnyn

The symbols x and y denote the generators of the groups E
2;0
2 and E

0;2
2 respectively. In particular:
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• x is image of the 1st Chern class of the base c1.n/ 2 H 2.CP n/ in H 2.A.n/d;e/ under the
boundary homomoprhism H 2.CP n/! H 2.A.n/d;e/.

• y is a preimage of the 1st Chern class of the fibre c1.n/ 2 H 2.CP n/ in H 2.A.n/d;e/ under
the boundary homomorphism H 2.A.n/d;e/! H 2.CP n/.

All non-zero groups are concentrated in the even dimensions, and therefore there are no non-zero
differentials. Because Z is free, there are no extension problems. Therefore, the spectral sequence
collapses immediately on the E2, with ring structure that of the truncated polynomial ring in two
variables ZŒx; y�=.xnC1; ynC1/; this is the associated graded of H �.A.n/d;e/. We conclude that
H �.A.n/d;e/ is a quotient of the polynomial ring ZŒx; y�, but we are unable to determine the relations
without further investigation. However, as abelian groups we have

H i.A.n/d;e/ Š

(
Z˚sj ; for i D 2j , where 0 6 j 6 2n,
0; otherwise,

as desired.

Lemma 6.4.6. The cohomology groups of �� are given by

H i.��/ Š

8̂̂̂̂
<̂
ˆ̂̂:

Z˚rj ; for i D 2j , where j D 0,
Z˚.rj Crj �1/; for i D 2j , where j D 1; 2; : : : ; 2n � 2,
Z˚rj �1; for i D 2j , where j D 2n � 1,
0; otherwise,

where rj are integers defined in equation (6.1).

Proof. Recall that �� is homeomorphic to the anti-diagonal ��
CP n � CP n � CP n of the product.

There is a CP n�1-bundle CP n�1 ! ��
CP n ! CP n, where the map ��

CP n ! CP n is the projection
onto one of the factors. (Note that the factor we project onto doesn’t matter here, but taking �� �

A.n/d;e as a subspace, we have a canonical choice by restricting � W A.n/d;e ! A.n/e Š CP n

to ��.) Via the homeomorphism �� Š ��
CP n , we can replace ��

CP n with �� to get the bundle
CP n�1 ! �� ! CP n to which we apply the Serre spectral sequence. The base CP n is simply
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connected, and therefore the spectral sequence has untwisted coefficients. The E2 page is given by:

s

t

0

2

:::

2n � 2

0 2 4 � � � 2n � 2 2n

Z

Zb

:::

Zbn�1

Za

Zab

:::

Zabn�1

Za2

Za2b

:::

Za2bn�1

� � �

� � �

: :
:

� � �

Zan�1

Zan�1b

:::

Zan�1bn�1

Zan

Zanb

:::

Zanbn�1

The symbols a and b denote the generators of the groups E
2;0
2 and E

0;2
2 respectively. Like in case for

A.n/d;e (see the proof of Lemma 6.4.5):

• a is image of the 1st Chern class of the base c1.n/ 2 H 2.CP n/ in H 2.��/ under the boundary
homomoprhism H 2.CP n/! H 2.��/.

• b is a preimage of the 1st Chern class of the fibre c1.n�1/ 2 H 2.CP n�1/ in H 2.��/ under
the boundary homomorphism H 2.��/! H 2.CP n�1/.

All non-zero groups are concentrated in the even dimensions, and therefore there are no non-zero
differentials. Because Z is free, there are no extension problems. Therefore, the spectral sequence
collapses immediately on the E2, with ring structure that of the truncated polynomial ring in two
variables ZŒa; b�=.anC1; bn/; this is the associated graded of H �.��/. We conclude that H �.��/ is
a quotient of the polynomial ring ZŒa; b�, but we are unable to determine the relations without further
investigation. As abelian groups, we have

H i.��/ Š

8̂̂̂̂
<̂
ˆ̂̂:

Z˚rj ; for i D 2j , where j D 0,
Z˚.rj Crj �1/; for i D 2j , where j D 1; 2; : : : ; 2n � 2,
Z˚rj �1; for i D 2j , where j D 2n � 1,
0; otherwise,

as desired.

Remark 6.4.7. In fact, we have a description of the two generators of H 2.��/ by Theorem 5.2.3.
Thinking of the bundle CP n�1 ! �� ! CP n as the restriction of CP n ! A.n/d;e ! A.n/e to
��, we see that the projection is onto the degree-e component of the A-space. By Theorem 5.2.8,
the bundle over this space has the eth tensor power of n, and therefore the pullback of n along the
projection �� ! CP n must be �e;n. In the notation of the proof above, its 1st Chern class c1.�e;n/
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corresponds to a. The fibre CP n�1 consists of planes orthogonal to the chosen basepoint, and hence
we obtain n�1 by pulling back �d;e along the inclusion CP n�1 ! ��. Its 1st Chern class c1.�d;n/

corresponds to b.

Calculating ‰. The map ‰ W H i.A.n/p;q/˚H i.A.n/q;p/! H i.�/˚H i.��/ has a description
as the block matrix

‰ D

�H i.A.n/p;q/ H i.A.n/q;p/

j �
p;q �j �

q;p H i.�/

k�
p;q �k�

q;p H i.��/

�
where jd;e W � ,! A.n/d;e and kd;e W �

� ,! A.n/d;e are the inclusion maps.
Recall that the proof of Lemma 6.4.5 finds generators x; y 2 H 2. zA.n/d;e/ of the cohomology

ring H �. zA.n/d;e/, and Remark 6.4.7 tells us that c1.�p;n/; c1.�q;n/ 2 H 2.��/ are the generators of
the cohomology ring H �.��/. The cohomology ring H �.�/ is generated by c1.n/ 2 H 2.�/. To
disambiguate, we denote the generators of H 2.A.n/p;q/ by x, y, and the generators of H 2.A.n/q;p/

by x0, y 0 when appropriate. In this notation, we state the following lemma.
Lemma 6.4.8. In matrix form, the map ‰ W H 2j .A.n/p;q/˚H 2j .A.n/q;p/! H 2j .�/˚H 2j .��/

for j > 0 is given by

�
j �

p;q �j �
q;p

k�
p;q �k�

q;p

� 0BB@
jP

sD0

asx
syj �s

jP
sD0

bsx
0sy 0j �s

1CCA D
0BB@

jP
sD0

.asq
j �s � bsp

j �s/ c1.n/j

jP
sD0

.as � bj �s/ c1.�q;n/sc1.�p;n/j �s

1CCA ;

where as; bs 2 Z.

Proof. This proof will involve a few lengthy calculations analysing the inclusions jd;e and kd;e.

A description of k�
d;e

. We begin by considering the inclusion kd;e W �
� ,! A.n/d;e. Recall that

A.n/d;e is a CP n-bundle CP n ! A.n/d;e ! CP n by Lemma 6.4.4, where the map A.n/d;e ! CP n

is quotient of the projection map CP n �L2nC1
e�1 ! L2nC1

e�1 . Restricted to the subspace ��, we instead
have the CP n�1-bundle CP n�1 ! �� ! CP n (see proof of Lemma 6.4.6). These fibre bundles fit
into the commutative diagram

CP n�1 CP n

�� A.n/d;e

CP n CP n;

 - !

 
-

!

 
-

!

 - !
kd;e

 

�  �

 

   

where the map on the fibres CP n�1 ,! CP n is the inclusion induced by Cn ,! CnC1. This induces
isomorphisms

H i.CP n/ Š H i.CP n�1/
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for all i 6 2n� 2, while the bottom horizontal map induces isomorphisms on all cohomology groups.
Denoting the E2 page of the Serre spectral sequence for CP n ! A.n/d;e ! CP n (see proof of
Lemma 6.4.5) by E2, and for CP n�1 ! �� ! CP n (see proof of Lemma 6.4.6) by E0 2, we have by
naturality of the Serre spectral sequence induced natural isomorphisms

E
0 s;t

2 Š E
s;t
2

for all p C q 6 2n � 2. Both spectral sequences degenerate on the E2 page because all non-zero
cohomology groups of CP n and CP n�1 are concentrated in the even dimensions. So kd;e induces
isomorphisms

H i.A.n/d;e/ Š H i.��/

for all i 6 2n� 2. In the notation of the proofs for Lemmas 6.4.5 and 6.4.6, we remark that k�
d;e

maps
x 2 H 2. zA.n/d;e/ to a 2 H 2.��/ and y 2 H 2. zA.n/d;e/ to b 2 H 2.��/.

A description of j �
d;e

. For the other inclusion jd;e W � ,! A.n/d;e, we begin by determining j �
d;e

on
H 2. From Section 5.2.2, we know that there is a principal U.nC 1/-bundle � W SP.n/! A.n/, and
therefore it has a classifying map �� W A.n/! BU.nC 1/. Restricting this bundle to the subspace
A.n/d;e, and then further to the subspaces �; �� � A.n/d;e, we find the commutative diagram

�� A.n/d;e

BU.nC 1/ �:

 - !
kd;e

 

!

��j��

 
!

��jA.n/d;e  
-

!

jd;e

 

!

��j�

This yields the following commutative diagram on H 2:

H 2.��/ H 2.A.n/d;e/

H 2.BU.nC 1// H 2.�/:

 

!k
�
d;e

Š

 

!

j �
d;e

 

!

.��j�� /�

 

!
.��j�/�

 

!

.��jA.n/d;e
/� (6.6)

Recall that H 2.BU.nC1// Š Z is generated by the 1st Chern class c1.V U.nC1// [MS74, Theorem
14.5], and H 2.�/ Š Z is generated by the 1st Chern class c1.n/ (c.f. Lemma 6.2.3). We compute
the bottom horizontal map

H 2.BU.nC 1//
.��j�/�

�����! H 2.�.n//

in two different ways around the diagram (6.6) by tracking how it acts on the Chern classes:

1. By Theorem 5.2.8, the associated vector bundle V� W V.SP.n// ! A.n/ restricts to ˝d
n ˚

?
n ! A.n/at

d
over the degree-d atomic A-space. However, we now notice that � is precisely

the atomic A-space of degree pq, for an equivalence class Œ�v; �v� 2 � consists of those
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split polynomials which can be expressed as A ı .�v; p/ ı .�v; q/ D AA�1�p�p.1�q/

ı .v; pq/

or A ı .�v; q/ ı .�v; p/ D AA�1�q�q.1�p/

ı .v; pq/ for some A 2 U.nC 1/. Therefore the
restriction ��j� W �! BU.nC1/ is the classifying map for the vector bundle 

˝pq
n ˚?

n ! �.
By naturality, the pullback of the 1st Chern class of V U.nC 1/ is thus

.��j�/�c1.V U.nC 1// D c1.˝pq
n /C c1.?

n / D .pq � 1/ c1.n/ 2 H 2.�/:

2. The map k�
d;e

gives isomorphisms

H 2.��/ Š H 2.A.n/d;e/ Š Z˚ Z:

The proof of Lemma 6.4.5 gives explicit generators x; y 2 H 2.A.n/d;e/: x is the 1st Chern
class of the pullback of n along the projection A.n/d;e ! CP n onto the second factor, and y

is a preimage of c1.n/ under H 2.A.n/d;e/! H 2.CP n/. But now, the diagonal � receives a
homeomorphism from CP n such that the composition

CP n Š
��! �

jd;e

,��! A.n/d;e �� CP n

is the identity. We deduce that the image of x under j �
d;e
W H 2.A.n/d;e/! H 2.�/ must be

c1.n/.
It remains to calculate the image of y in H 2.�/ under j �

d;e
. By Theorem 5.2.3, V� W V.SP.n//!

A.n/ restricts to �˝d
d;n
˚ �˝e

e;n ˚ .�d;n ˚ �e;n/? ! �� over the anti-diagonal, and ��j�� is its
classifying map. By Remark 6.4.7, c1.�d;e/ and c1.�e;n/ are the images of the two generators y

and x respectively under k�
d;e

. Let the image of y under j �
d;e

be m c1.n/ 2 H 2.�/ for some
m 2 Z. First, computing the composition

H 2.BU.nC 1//
.��j�� /�

������! H 2.��/
k��1

d;e

���!
Š

H 2.A.n/d;e/

yields

k��1
d;e .��jA.n/d;e

/�c1.V U.nC 1//

D k��1
d;e .c1.�˝d

d;n
/C c1.�˝e

e;n/ � c1.�d;n/ � c1.�e;n//

D .d � 1/ k��1
d;e c1.�d;n/C .e � 1/ k��1

d;e c1.�e;n/

D .d � 1/y C .e � 1/x:

Further applying j �
d;e

, we find that

j �
d;e..d � 1/y C .e � 1/x/ D .m.d � 1/C .e � 1// c1.n/:

By commutativity of (6.6), we must have

m.d � 1/C .e � 1/ D pq � 1 D de � 1:

Therefore, m D e. We conclude that j �
d;e
W H 2.A.n/d;e/! H 2.�/ is given by

j �
d;e.ax C by/ D .aC eb/ c1.n/
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for a; b 2 Z.
Then, the map ‰ W H 2.A.n/p;q/˚H 2.A.n/q;p/! H 2.�/˚H 2.��/ is given by�

j �
p;q �j �

q;p

k�
p;q �k�

q;p

� �
ax C by

cx0 C dy 0

�
D

�
.a � c C qb � pd/ c1.n/

.b � c/ c1.�p;n/C .a � d/ c1.�q;n/

�
for a; b; c; d 2 Z.

To determine j �
d;e

on the higher cohomology groups, we recall that a map of spaces jd;e W � ,!

A.n/d;e induces a map of rings j �
d;e
W H �.A.n/d;e/ ! H �.�/. Therefore, we also immediately

conclude that
j �

d;e.xsyt/ D et c1.n/sCt

for 0 6 s; t 6 n. The map ‰ W H 2j .A.n/p;q/ ˚ H 2j .A.n/q;p/ ! H 2j .�/ ˚ H 2j .��/ has the
form �

j �
p;q �j �

q;p

k�
p;q �k�

q;p

� 0BB@
jP

sD0

asx
syj �s

jP
sD0

bsx
0sy 0j �s

1CCA D
0BB@

jP
sD0

.asq
j �s � bsp

j �s/ c1.n/j

jP
sD0

.as � bj �s/ c1.�q;n/sc1.�p;n/j �s

1CCA ;

where as; bs 2 Z.

Proof of Theorems 6.4.1 and 6.4.2. We return the Mayer-Vietoris sequence (6.5). Because the coho-
mology groups of A.n/d;e, �, and �� are all concentrated in the even dimensions, the Mayer-Vietoris
sequence becomes disjoint exact sequences

� � � 0

H 2j .A.n/pq/ H 2j .A.n/p;q/˚H 2j .A.n/q;p/ H 2j .�/˚H 2j .��/

H 2j C1.A.n/pq/ 0 � � �

 
!

 

!

 

!
‰2j

 

!

 

!

 

!

 

!

for all j . To disambiguate, we decorate the map ‰ W H 2j .A.n/p;q/˚H 2j .A.n/q;p/! H 2j .�/˚

H 2j .��/ in dimension 2j with an index of 2j . By exactness, we have isomorphisms H 2j .A.n/pq/ Š

ker ‰2j and H 2j C1.A.n/pq/ Š coker ‰2j .

• For j D 0, ‰0 is the diagonal map�
j �

p;q �j �
q;p

k�
p;q �k�

q;p

� �
a

b

�
D

�
a � b

a � b

�
:

So ker ‰0 Š Z and coker ‰0 Š Z.

• For j D 1, ‰2 can be written as the integer matrix

‰2
D

0@
x y x0 y 0

1 q �1 �p c1.n/

0 1 �1 0 c1.�p;n/

1 0 0 �1 c1.�q;n/

1A
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with respect to the basis x; y; x0; y 0 for H 2.A.n/p;q/ ˚H 2.A.n/q;p/, and the basis c1.n/;

c1.�p;n/; c1.�q;n/ for H 2.�/˚H 2.��/. Row reducing, the Smith normal form of the matrix
of ‰2 is 0@1 0 0 0

0 1 0 0

0 0 .p � 1; q � 1/ 0

1A :

Therefore, ker ‰2 Š Z and coker ‰2 Š Z.p�1;q�1/.

This proves Theorem 6.4.2.

• In general, we make the computation rationally. Tensoring with Q, ‰2j ˝Q is surjective in all
dimensions except 0. So for j > 0, we have coker ‰2j D 0, and by rank-nullity,

ker ‰2j
Š

8̂̂̂̂
<̂
ˆ̂̂:

Q˚.sj �1/; if 1 6 j < n,
Q˚sj ; if j D n,
Q˚.sj C1/; if n < j 6 2n,
0; otherwise,

where we recall that sj D rank H 2j .A.n/p;q/ D rank H 2j .A.n/q;p/ by Lemma 6.4.5.

Hence,

H i.A.n/pqIQ/ Š

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Q; for i D 0; 1,
Q˚.sj �1/; for i D 2j , where 1 6 j < n,
Q˚sj ; for i D 2j , where j D n,
Q˚.sj C1/; for i D 2j , where n < j 6 2n,
0; otherwise,

as desired.

6.5 The stable cohomology of Apq

In this section, we prove that the cohomology groups of A.n/pq stabilise, analogous to the results in
Section 6.3.
Theorem 6.5.1 (Stable cohomology of Apq). The inclusion A.n/p2 ,! A.nC 1/p2 induces isomor-
phisms

H i.A.nC 1/p2/ Š H i.A.n/p2/

for all i 6 2n � 2. Furthermore, the rational cohomology groups of Apq are given by

H i.ApqIQ/ Š

8̂<̂
:

Q; for i D 0; 1,
Q˚j ; for i D 2j , where j > 1,
0; otherwise.
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Notation 6.5.2. For the rest of this section, we denote the diagonal and anti-diagonal of A.n/pq by
�.n/ and ��.n/ respectively.

Lemma 6.5.3. The inclusions �.n/ ,! �.nC 1/ induce isomorphisms

H i.�.nC 1// Š H i.�.n//

for all i 6 2n.

Proof. The proof for Lemma 6.3.4 works in this case verbatim.

Lemma 6.5.4. The inclusion ��.n/ ,! ��.nC 1/ induces isomorphisms

H i.��.nC 1// Š H i.��.n//

for all i 6 2n.

Proof. The proof for Lemma 6.3.5 goes through after replacing every instance of RP 2 with CP 1, and
every instance of ��=Z2 with ��.

Lemma 6.5.5. The inclusion A.n/d;e ,! A.nC 1/d;e induces isomorphisms

H i.A.nC 1//d;e Š H i.A.n//d;e

for all i 6 2n � 2.

Proof. The inclusion A.n/d;e ,! A.nC 1/d;e induces the following inclusion of fibre bundles

CP n CP nC1

A.n/d;e A.nC 1/d;e

CP n CP nC1;

 - !

 
-

!

 
-

!

 - !

 �  �

 - !

where both inclusions CP n ,! CP nC1 on the fibre and on the base correspond to the inclusion
induced by CnC1 ,! CnC2. These induce isomorphisms

H i.CP n�1/ Š H i.CP n/

for all i 6 2n � 2, and therefore by naturality of the Serre spectral sequence (c.f. the proofs in
Section 6.3), the inclusion A.n/d;e ,! A.nC 1/d;e induces isomorphisms

H i.A.n//d;e Š H i.A.nC 1//d;e

for all i 6 2n � 2.
The above lemmas once again provide us with a range in which the cohomology groups of the

Mayer-Vietoris sequence (6.5) are stable (c.f. proof of Theorem 6.4.1).
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Proof of Theorem 6.5.1. Considering the Mayer-Vietoris sequences for A.n/pq and A.nC 1/pq, we
have by naturality a commutative diagram

:::
:::

H i�1.A.nC 1/p;q/˚H i�1.A.nC 1/q;p/ H i�1.A.n/p;q/˚H i�1.A.n/q;p/

H i�1.�.nC 1//˚H i�1.��.nC 1// H i�1.�.n//˚H i�1.��.n//

H i.A.nC 1/pq/ H i.A.n/pq/

H i.A.nC 1/p;q/˚H i.A.nC 1/q;p/ H i.A.n/p;q/˚H i.A.n/q;p/

H i.�.nC 1//˚H i.��.nC 1// H i.�.n//˚H i.��.n//;

:::
:::

 !  !

 

!
Š

 !  !

 

!
Š

 !  !

 

!

 !  !

 

!
Š

 !  !

 

!
Š

 !  !

where 4 out of 5 of the horizontal maps are isomorphisms for all i 6 2n� 2. Hence, by the 5-lemma,
H i.A.nC 1/pq/! H i.A.n/pq/ is an isomorphism for all i 6 2n � 2.

From Theorem 6.4.1, we have for each positive integer n, the rational cohomology of A.n/pq in
the stable range i 6 2n � 2 is given by

H i.A.n/p2IQ/ Š

(
Q; for i D 0; 1,
Q˚j ; for i D 2j , where j > 1.

Hence, by functoriality of cohomology and taking the limit as n!1, we find that

H i.ApqIQ/ Š

8̂<̂
:

Q; for i D 0; 1,
Q˚j ; for i D 2j , where j > 1,
0; otherwise,

as desired.





A Some additional proofs
We now provide the omitted proofs relating to the structure of the A-space.
Theorem 3.4.5 (Injectivity of Z for d D p2). The map

ZjA.n/
p2
W A.n/p2 �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/p2 to its set of critical points is injective.

Theorem 3.4.6 (Relations in A.n/p2). In the A-space of degree p2, the following relations are
satisfied for all v; w 2 S2nC1, � 2 S1:

1. Œ�v ı w� D Œv ı w� and Œv ı �w� D ŒA�p�1

w v ı w�.

2. Œv ı w� D Œw ı v� if either v k w or v ? w.

Furthermore, these are the only relations in A.n/p2 .

Proof of Theorems 3.4.5 and 3.4.6. To show this, let us first study the structure of ZŒv ı w� for some
Œv ı w� 2 A.n/p2 . Let V denote the vanishing locus of a polynomial. Then

ZŒv ı w� D V.hz; wi/ [ V.hw.z/; vi/ D .Cw/?
[ w�1..Cv/?/:

We make the following observations:

• The set w�1..Cv/?/ is a hypersurface which is the preimage under w of the the hyperplane
.Cv/?. Explicitly, w�1..Cv/?/ is the set of points satisfying the equation

v?z0 C vkz
p
n D 0;

where z D z0b0 C � � � C zn�1bn�1 C znw and v D v?b0 C vkw for some suitable choice of
orthonormal basis b0; : : : ; bn�1; w of CnC1. In particular, v? ¤ 0 as long as v ¬ w, so we can
re-express the above equation as

z0 D �
vk

v?

zp
n ;

which is the graph of the function .z1; : : : ; zn/ 7! �vkz
p
n =v? defined on the hyperplane .Cb0/?

(spanned by b1; : : : ; bn�1; w) and thinking of the axis spanned by b0 as the “output” axis. Since
p > 1, the hypersurface w�1..Cv/?/ will always have the hyperplane .Cb0/? as its tangent
hyperplane at the origin, where b0 ? w.

• When v k w, Œv ı w� � Œv ı v� and therefore the critical point reduces to a single hyperplane

ZŒv ı w� D ZŒ.v; p2/� D V.hz; vi/ D .Cv/?:

69
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So from a set of critical points Z of some Œv ı w� 2 A.n/p2 , we can decompose it into its irreducible
components. There are two cases:

1. If there is only one irreducible component, it is a hyperplane and we can express Z D .Cv/?.
The only element of A.n/p2 which is sent to .Cv/? by Z is Œv � w� for v k w.

2. If there are two irreducible components, one of these components must be a hyperplane .Cw/?.
The vector w 2 S2nC1 is unique up to a choice of � 2 S1, for we have .Cw/? D .C�w/?.

The first case leads to the parallel case in relation 2. Let us focus on the second case.
If the second irreducible component is also a hyperplane .Cv/?, it is necessary from our observations

above that v ? w (corresponding to the case where v D v?b0 with no w component), in which case
the ordering of the hyperplanes does not matter, and we have Z D ZŒv � w� D ZŒw � v�. So assume
that the other irreducible component is a hypersurface, which can be described as a graph

� D f czp
n b0 C z1b1 C � � � C zn�1bn�1 C znw j .z1; : : : ; zn/ 2 Cn

g:

The tangent hyperplane to � at the origin is .Cb0/?, from which we can reconstruct v using the
formula

v D v?b0 C vkw D �vkcb0 C vkw; where v?; vk 2 C; c D �
v?

vk

:

We now go through all the choices that we made to check how they affect the resulting pair of
vectors v and w that we construct:

• The vector v is unique up to a choice of � 2 S1, for we have that

�v D .�v?/b0 C .�vk/w D �.�vk/cb0 C .�vk/w

also satisfies c D �.�v?/=.�vk/.

• The choice of b0 does not matter for if we had chosen b0
0 D �b0 instead to represent the

hyperplane .Cb0/? D .C�b0/?, we can write � as

� D f .��1c/zp
n .�b0/C z1b1 C � � � C zn�1bn�1 C znw j .z1; : : : ; zn/ 2 Cn

g;

and correspondingly the v associated to this representation of � is

v D v0
?.�b0/C v0

k
w D �v0

k
.��1c/.�b0/C v0

k
w; where v0

?; v0
k
2 C; ��1c D �

v0
?

v0
k

;

giving the same v as before.

• The choice of w however does matter. If we had chosen w0 D �w to represent the hyperplane
.Cw/? D .C�w/?, we can write � as

� D f .�pc/.zn��1/pb0 C z1b1 C � � � C zn�1bn�1 C .zn��1/.�w/ j .z1; : : : ; zn/ 2 Cn
g:

The corresponding v associated to this representation of � is

v D v0
?b0 C v0

k
.�w/ D �v0

k
.�pc/b0 C v0

k
.�w/; where v0

?; v0
k
2 C; �pc D �

v0
?

v0
k

:

So what we find is that

Z D ZŒv ı w� D ZŒ�v ı w� D ZŒA�1�p

w v ı �w�; �; � 2 S1:
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This constructs an inverse map of ZjA.n/
p2

from its image, showing that ZjA.n/
p2

is injective. We
have also verified all the relations in A.n/p2 .

Theorem 3.4.11 (Injectivity of Z for d D pq). Let p and q be distinct primes. The map

ZjA.n/pq
W A.n/pq �! f algebraic subsets of CnC1 g

Œf � 7�! ZŒf �

assigning each equivalence class of A.n/pq to its set of critical points is injective.

Theorem 3.4.12 (Relations in A.n/pq). Let p and q be distinct primes, and let fd; eg D fp; qg. In
the A-space of degree pq, the following relations are satisfied for all v; w 2 S2nC1, � 2 S1:

1. Œ.�v; d/ ı .w; e/� D Œ.v; d/ ı .w; e/� and Œ.v; d/ ı .�w; e/� D Œ.A�e�1

w v; d/ ı .w; e/�.

2. Œ.v; d/ ı .w; e/� D Œ.w; e/ ı .v; d/� if either v k w or v ? w.

Furthermore, these are the only relations in A.n/pq.

Proof of Theorems 3.4.11 and 3.4.12. The proof has virtually the same structure as the proof for
Theorems 3.4.5 and 3.4.6, so we will not repeat ourselves. The only place we must take care is in
extracting the order of the prime degrees of the atomic polynomial maps. However, because there are
only two such maps with distinct degrees, this can be done by inspecting the form of the hypersurface
� we defined above.

In the general case, we have the formula

ZŒv1 ı � � � ı vk� D V.det.Dvk/z/ [ V.det.Dvk�1/vk.z// [ : : :

� � � [ V.det.Dv1/v2ı���ıvk.z//

D V.hz; vki/ [ V.hvk.z/; vk�1i/ [ � � �

� � � [ V.hv2 ı � � � ı vk.z/; v1i/

D .Cvk/?
[ v�1

k ..Cvk�1/?/ [ v�1
k v�1

k�1..Cvk�2/?/ [ � � �

� � � [ v�1
k v�1

k�1 � � � v
�1
2 ..Cv1/?/

for the critical point set of an element of the A-space. In this form, it is conceivable that the general
cases of Conjecture 3.4.1 (Injectivity of Z) and Conjecture 3.4.2 () may be proven via an inductive
argument. We choose not to embark on this endeavour within this thesis.
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