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Once upon a time…



Once upon a time … there were the hypersurfaces

Definition
Let 𝑓 ∈ 𝐂[𝑇0, … , 𝑇𝑛+1] be a homogeneous polynomial of degree 𝑑 > 0. Assume 0 is
a regular value of 𝑓. Then

𝑋𝑛(𝑑) = 𝑋𝑛(𝑓) ≔ { [𝑧] ∈ 𝐂𝑃
𝑛+1 | 𝑓(𝑧) = 0 }

is called a hypersurface.
• It is a complex manifold with dimension 𝑛 and codimension 1.
• We mainly focus on the underlying orientable smooth manifold.
• The number 𝑑 is called the degree.

Example
• 𝑋1(𝑑) ⊆ 𝐂𝑃

2 is a closed orientable surface.
• 𝑋2(𝑇

4
0 + 𝑇

4
1 + 𝑇

4
2 + 𝑇

4
3 ) is a K3 surface.
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Out of the hypersurfaces, the complete intersections arose

Definition
Let 𝑓1, … , 𝑓𝑘 ∈ 𝐂[𝑇0, … , 𝑇𝑛+𝑘] be homogeneous polynomials of degree 𝑑1, … , 𝑑𝑘 > 0.
Assume 0 is a regular value of each 𝑓𝑖. When the 𝑘 hypersurfaces

𝑋𝑛(𝑑) = 𝑋𝑛(𝑓1, … , 𝑓𝑘) ≔ 𝑋𝑛+𝑘−1(𝑓1) ∩⋯ ∩ 𝑋𝑛+𝑘−1(𝑓𝑘) ⊆ 𝐂𝑃
𝑛+𝑘

intersect transversely, their intersection is called a complete intersection.
• It is a complex manifold with dimension 𝑛 and codimension 𝑘.
• We call 𝑑 = {𝑑1, … , 𝑑𝑘} (a multiset) the multidegree.
• The product 𝑑 = 𝑑1 ⋯𝑑𝑘 is called total degree.

Example

Let 𝑇 = (
𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

). The nilpotent cone of 𝔤𝔩3 is 𝑋5(tr(𝑇), tr(𝑇
2) − tr(𝑇)2, det(𝑇)).
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By the degree-genus formula’s hand, the hypersurfaces fell

What do we know about complete intersections as smooth manifolds?
By a result due to Thom [CN23, §2.1], the diffeomorphism type of a complete
intersection depends only on the multidegree 𝑑 = {𝑑1, … , 𝑑𝑘}, not on the
polynomials.

Example (The degree-genus formula for surfaces)
The hypersurface 𝑋1(𝑑) ⊆ 𝐂𝑃

2 is closed orientable surface. By the classification
of closed surfaces, it is diffeomorphic to the genus 𝑔 surface 𝐹𝑔 for some 𝑔.
The degree-genus formula says that

𝑔 =
(𝑑 − 1)(𝑑 − 2)

2
.

It’s always an integer!
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Complete intersections of dimension 1 too were conquered

Generalisation to multidegrees
In general, 𝑋1(𝑑1, … , 𝑑𝑘) ⊆ 𝐂𝑃

1+𝑘 is a closed orientable surface. It is diffeomorphic
to 𝐹𝑔 for some 𝑔. The genus is given by the formula

𝑔 =
2 − 𝑑1 ⋯𝑑𝑘(𝑘 + 2 − (𝑑1 +⋯ + 𝑑𝑘))

2
.

Yes, this is also always an integer!

Example
We can find collections of integers whose sum and product are the same:
• {𝑑1, 𝑑2, 𝑑3} = {6, 6, 1}: 6 + 6 + 1 = 13, 6 ⋅ 6 ⋅ 1 = 36.
• {𝑑1, 𝑑2, 𝑑3} = {2, 2, 9}: 2 + 2 + 9 = 13, 2 ⋅ 2 ⋅ 9 = 36.
• Therefore 𝑋1(6, 6, 1) ≈ 𝑋1(2, 2, 9) ≈ 𝐹145.
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But yet, for higher dimensions, they held mysteries to be uncovered

Conjecture
The Sullivan Conjecture states that for 𝑛 ⩾ 3, two complete intersections 𝑋𝑛(𝑑)
and 𝑋𝑛(𝑑

′) are diffeomorphic if they have the same Sullivan data:
1. the total degree 𝑑 = 𝑑1 ⋯𝑑𝑘;
2. the Pontryagin classes regarded as integers(!); and
3. the Euler characteristic.

For a fixed 𝑛, the above integers are all polynomials in the degrees 𝑑1, … , 𝑑𝑘.
Example
The Sullivan Conjecture holds for 𝑛 = 4 due to [CN23]. For example,

𝑋4(3, … , 3⏟
150

, 7, … , 7⏟
89

, 9, … , 9⏟
65

, 15, 25, … , 25⏟
130

) and 𝑋4(5, … , 5⏟
261

, 21, … , 21⏟
89

, 27, … , 27⏟
64

)

are diffeomorphic.
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The road ahead

Setting the scene
Complete intersections and the Sullivan conjecture
Introducing fibrewise degree-𝑑 maps

Introducing the main characters: split polynomials
Introducing the 𝒜-space

On the topic of classifying spaces
Classifying fibrewise split polynomial maps
Vector bundles over the 𝒜-space

Cohomology of the 𝒜-space
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Fibrewise degree-𝑑maps

How do we study complete intersections?
Complete intersections arise in another way.
• Let 𝛾 denote the conjugate of the tautological bundle over 𝐂𝑃𝑛.
• Let 𝑓𝑑 ∶ 𝛾 ⊕⋯ ⊕ 𝛾 → 𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘 denote the tautological map.

If we restrict 𝑓𝑑 to the disc bundle 𝐷(𝛾 ⊕⋯⊕𝛾), then 𝑋𝑛(𝑑) arises as the transverse
intersection of 𝑓𝑑 with the zero section for certain choices of homotopy.

𝐷(𝛾 ⊕⋯ ⊕ 𝛾) 𝐷(𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘)

𝐂𝑃𝑛 𝐂𝑃𝑛

→
𝑓𝑑

→ →

→

zero section

We call 𝑓𝑑 the normal map of 𝑋𝑛(𝑑).
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Fibrewise degree-𝑑maps

Definition
A fibrewise degree-𝑑map is a fibre preserving map 𝑓 ∶ 𝑆(𝐸𝑛) → 𝑆(𝐹𝑛) between the
sphere bundles of two (complex) vector bundles which is degree 𝑑 on each fibre.

𝑆(𝐸𝑛) 𝑆(𝐹𝑛)

𝑋

→
𝑓

→ →

We define a functor

ℱ𝑑 ∶ Top
op → Sets, ℱ𝑑(𝑋) ≔ { 𝑓 ∶ 𝑆(𝐸) → 𝑆(𝐹) }/stabilisation & homotopy,

giving the stable homotopy classes of fibrewise degree-𝑑 maps over a space 𝑋.

Example
The normal map 𝑓𝑑 ∶ 𝑆(𝛾 ⊕⋯⊕𝛾) → 𝑆(𝛾⊗𝑑1 ⊕⋯⊕𝛾⊗𝑑𝑘) is a fibrewise degree-𝑑map.
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All of the fibrewise degree-𝑑maps

How do we classify fibrewise degree-𝑑maps?
The functor ℱ𝑑 is representable, due to Brown [Bro62], by a classifying space
which we denote by (𝑄𝑆0/𝑈)𝑑. In other words, there is a natural bijection

ℱ𝑑(𝑋) ≈ [𝑋, (𝑄𝑆
0/𝑈)𝑑].

Remark (About the notation)
The spaces 𝑄𝑆0 and 𝑈 are the direct limits

𝑄𝑆0 ≔ lim−−−→𝑛
Map(𝑆𝑛, 𝑆𝑛) and 𝑈 ≔ lim−−−→𝑛

𝑈(𝑛)

under the standard inclusions.
(Their appearance in the notation (𝑄𝑆0/𝑈)𝑑 is following the work of Brumfiel and
Madsen [BM76], and does not hold any precise mathematical meaning.)
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But why fibrewise degree-𝑑maps?

Recall the normal map 𝑓𝑑 ∶ 𝛾 ⊕⋯ ⊕ 𝛾 → 𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘 over 𝐂𝑃𝑛 from which
arises a complete intersection 𝑋𝑛(𝑑). On the sphere bundles, this is a fibrewise
degree-𝑑 map, and therefore it has a classifying map 𝑐𝑑 ∶ 𝐂𝑃

𝑛 → (𝑄𝑆0/𝑈)𝑑, called
the normal invariant.

(𝑆(𝛾 ⊕⋯ ⊕ 𝛾)
𝑓𝑑
−−→ 𝑆(𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘)) (𝑆(𝐸univ)

𝑓univ
−−−−−→ 𝑆(𝐹univ))

𝐂𝑃𝑛 (𝑄𝑆0/𝑈)𝑑

→

→

⌟
→

→
𝑐𝑑

Theorem (Crowley and Nagy [CN23, Theorem 5.17])
Let 𝑛 ⩾ 3. The normal invariants 𝑐𝑑 and 𝑐𝑑′ for complete intersections 𝑋𝑛(𝑑) and
𝑋𝑛(𝑑

′) are homotopic if and only if 𝑋𝑛(𝑑) and 𝑋𝑛(𝑑
′) are diffeomorphic.
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All of the fibrewise degree-𝑑maps, again

So which space is (𝑄𝑆0/𝑈)𝑑?
A priori, we do not know what the space (𝑄𝑆0/𝑈)𝑑 is. In my thesis, I construct a
model for this classifying space.

Let 𝑄𝑆0𝑑 denote the degree-𝑑 component of 𝑄𝑆
0. It is equipped with a left

𝑈-action by pre-composition.

Theorem A (F. ’24, A model for (𝑄𝑆0/𝑈)𝑑)
The homotopy quotient 𝑄𝑆0𝑑//𝑈, defined as the balanced product

𝑄𝑆0𝑑//𝑈 ≔ 𝐸𝑈 ×𝑈 𝑄𝑆
0
𝑑,

is a model for the classifying space of fibrewise degree-𝑑 maps.
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Fibrewise degree-𝑑maps: too much?

Are fibrewise degree-𝑑maps what we want?
Recall the normal map 𝑓𝑑 ∶ 𝛾 ⊕⋯ ⊕ 𝛾 → 𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘.

Let us simplify and consider when 𝑘 = 1. We can describe 𝑓𝑑 ∶ 𝛾 → 𝛾⊗𝑑 on each
fibre just the 𝑑th power map

𝜆𝑣 ↤→ 𝜆𝑣 ⊗⋯ ⊗ 𝜆𝑣 = 𝜆𝑑𝑣 ⊗⋯ ⊗ 𝑣.

This is not an arbitrary continuous map, but rather a polynomial.

So we are looking to classify fibrewise polynomial maps, not fibrewise maps in
general.
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Introducing the main characters

Split polynomials



What is a split polynomial?

Definition
The prototypical split polynomial is the 𝑑th power map 𝑧 ↦ 𝑧𝑑.
In the normal map 𝑓𝑑 ∶ 𝛾 ⊕⋯ ⊕ 𝛾 → 𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘, this occurs on each of the
1-dimensional subspaces belonging to a copy of 𝛾.
We can replicate this on 𝐂𝑛+1 in the following way:
1. Pick a direction 𝑣 ∈ 𝑆2𝑛+1, and extend 𝑣 to an ordered orthonormal basis
𝛽(𝑣) = (𝑣, 𝑏1, … , 𝑏𝑛) of 𝐂

𝑛+1.
2. Express the elements of 𝐂𝑛+1 using coordinates with respect to this basis:

(𝑧0 𝑧1 ⋯ 𝑧𝑛)𝛽(𝑣) ≔ 𝑧0𝑣 + 𝑧1𝑏1 +⋯ + 𝑧𝑛𝑏𝑛.

3. An atomic split polynomial (𝑣, 𝑑) is the 𝑑th power map in 𝑣-direction:

(𝑣, 𝑑) ⋅ (𝑧0 𝑧1 ⋯ 𝑧𝑛)𝛽(𝑣) = (𝑧
𝑑
0 𝑧1 ⋯ 𝑧𝑛)𝛽(𝑣) .
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What is a split polynomial?

Definition
The split polynomial space is the monoid under composition generated by the
atomic split polynomials (𝑣, 𝑑), and unitary maps 𝐴 ∈ 𝑈(𝑛 + 1). It is a topological
submonoid of Map(𝐂𝑛+1, 𝐂𝑛+1).

We denote the split polynomial space by 𝑆𝑃(𝑛).

Example (Normal form)
Because 𝐴 ∘ (𝑣, 𝑑) = (𝐴𝑣, 𝑑) ∘ 𝐴, a generic split polynomial has the form

𝑓 = 𝐴 ∘ (𝑣1, 𝑑1) ∘⋯ ∘ (𝑣𝑘, 𝑑𝑘).
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Introducing the𝒜-space

We can define a left 𝑈(𝑛 + 1)-action on the split polynomials by composition on
the left:

𝐴 ⋅ 𝑓 = 𝐴 ∘ 𝑓.

This action is free.

Definition
The 𝒜-space is quotient of 𝑆𝑃(𝑛) under the 𝑈(𝑛 + 1)-action. We denote the
𝒜-space by 𝒜(𝑛).

Why quotient by the unitary action?
• Each split polynomial 𝑓 has a set of critical points 𝑍[𝑓] in the domain where
its derivative 𝐷𝑓 is not surjective.

• Two split polynomials defining the same equivalence class in the 𝒜-space
have the same critical points.
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Fantastic critical points and where to find them

These critical points 𝑍[𝑓] are actually algebraic subsets of 𝐂𝑛+1 formed by taking
unions of hypersurfaces.

Explicitly, it is the union of the vanishing loci

𝑍[(𝑣1, 𝑑1) ∘⋯ ∘ (𝑣𝑘, 𝑑𝑘)]
= 𝑉(⟨𝑧, 𝑣𝑘⟩) ← hyperplane!
∪ 𝑉(⟨(𝑣𝑘, 𝑑𝑘) ⋅ 𝑧, 𝑣𝑘−1⟩)
∪ 𝑉(⟨(𝑣𝑘−1, 𝑑𝑘−1) ⋅ (𝑣𝑘, 𝑑𝑘) ⋅ 𝑧, 𝑣𝑘−2⟩)
∪⋯
∪ 𝑉(⟨(𝑣2, 𝑑2)⋯ (𝑣𝑘−1, 𝑑𝑘−1) ⋅ (𝑣𝑘, 𝑑𝑘) ⋅ 𝑧, 𝑣1⟩).

Figure 1: The real points of 𝑍[𝑓].
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Structure of the split polynomials

By studying the critical point set, we can answer questions such as the following.

When do atomic split polynomials commute?
Given atomic split polynomials (𝑣, 𝑑) and (𝑤, 𝑒), the two different compositions

(𝑣, 𝑑) ∘ (𝑤, 𝑒) = (𝑤, 𝑒) ∘ (𝑣, 𝑑)

are equal if and only if 𝑣 ∥ 𝑤 or 𝑣 ⟂ 𝑤.
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Decomposition by degree

The degree map
The map deg ∶ 𝑆𝑃(𝑛) → 𝐙 is locally constant, and therefore defines a
decomposition of the split polynomials by degree:

𝑆𝑃(𝑛) = ⨆
𝑑∈𝐙

𝑆𝑃(𝑛)𝑑, 𝑆𝑃(𝑛)𝑑 ≔ deg
−1(𝑑).

This decomposition also carries over to the 𝒜-space:

𝒜(𝑛) = ⨆
𝑑∈𝐙

𝒜(𝑛)𝑑, 𝒜(𝑛)𝑑 ≔ 𝑆𝑃(𝑛)𝑑/𝑈(𝑛 + 1).

The degree-𝑑 components can be studied by looking at the prime factorisation
of 𝑑.
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Structure of the𝒜-space

The atomic𝒜-space
The subspace of 𝒜(𝑛)𝑑 consisting of atomic split polynomials is homeomorphic
to 𝐂𝑃𝑛. For a prime degree 𝑝, the entire 𝒜(𝑛)𝑝 is atomic.

The degree-𝑝𝑞𝒜-space
When the degree is the product of two primes 𝑝𝑞, maps in 𝒜(𝑛)𝑝𝑞 can only
consist of compositions of two atomic split polynomials.
• When 𝑝 = 𝑞: 𝒜(𝑛)𝑝2 can roughly* be described as pairs [𝑣, 𝑤] subject to a
relation [𝑣, 𝑤] = [𝑤, 𝑣] if 𝑣 ⟂ 𝑤.

• When 𝑝 ≠ 𝑞: 𝒜(𝑛)𝑝𝑞 can roughly* be described as pairs [(𝑣, 𝑝), (𝑤, 𝑞)] or
[(𝑣, 𝑞), (𝑤, 𝑝)], with [(𝑣, 𝑝), (𝑤, 𝑞)] = [(𝑤, 𝑞), (𝑣, 𝑝)] if 𝑣 ∥ 𝑤 or 𝑣 ⟂ 𝑤.

Commutativity occurs when the directions are parallel or perpendicular.

*There are some additional relations
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On the topic of classifying spaces



Stabilising

The classifying space 𝑄𝑆0𝑑//𝑈 for the functor ℱ𝑑 classifies fibrewise degree-𝑑
maps up to stabilisation. So we would like to stabilise our split polynomials too.

Definition
Under the standard inclusions 𝐂𝑛+1 ↪ 𝐂𝑛+2, we can take the direct limit

𝑆𝑃𝑑 ≔ lim−−−→𝑛
𝑆𝑃(𝑛)𝑑, and 𝒜𝑑 ≔ lim−−−→𝑛

𝒜(𝑛)𝑑.

These are the stable split polynomial space and stable 𝒜-space of degree 𝑑.

The free 𝑈-action
𝑆𝑃𝑑 inherits a free 𝑈-action from each of the finite-dimensional subspaces.
Therefore:
• The stable 𝒜-space is also the quotient 𝑆𝑃𝑑/𝑈.
• We can also construct the homotopy quotient 𝑆𝑃𝑑//𝑈.
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Fibrewise split polynomialmaps

Recall the normal invariant 𝑐𝑑 ∶ 𝐂𝑃
𝑛 → 𝑄𝑆0𝑑//𝑈, which is the classifying map for a

normal map 𝑓𝑑 ∶ 𝛾 ⊕⋯ ⊕ 𝛾 → 𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘 of a complete intersection. From our
construction of the model 𝑄𝑆0𝑑//𝑈, 𝑐𝑑 a fortiori factors through 𝑆𝑃𝑑//𝑈.

𝐂𝑃𝑛 𝑄𝑆0𝑑//𝑈

𝒜𝑑

→
𝑐𝑑

→𝑐𝒜𝑑

→

In fact, because the 𝑈-action on 𝑆𝑃𝑑 is free, there is a fibration

𝐸𝑈 ←→ 𝑆𝑃𝑑//𝑈

←→ 𝒜𝑑

which yields a homotopy equivalence 𝑆𝑃𝑑//𝑈 ≃ 𝒜𝑑.
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What can we hope for?

Conjecture (Crowley and Nagy)
If the normal invariants 𝑐𝑑, 𝑐𝑑′ ∶ 𝐂𝑃

𝑛 → 𝑄𝑆0𝑑//𝑈 are homotopic, then maps into the
𝒜-space 𝑐𝒜𝑑 , 𝑐

𝒜
𝑑′ ∶ 𝐂𝑃𝑛 → 𝒜𝑑 are already homotopic.

𝐂𝑃𝑛 𝑄𝑆0𝑑//𝑈

𝒜𝑑

→𝑐𝑑′
→

𝑐𝑑

→

𝑐𝒜𝑑

→𝑐𝒜𝑑′

→

22 / 26



Vector bundles over the𝒜-space

Because the 𝒜-space is a quotient of 𝑆𝑃(𝑛) by a free 𝑈(𝑛 + 1)-action, the quotient
map 𝑆𝑃(𝑛) → 𝒜(𝑛) becomes a principal 𝑈(𝑛 + 1)-bundle. We get for free an
associated complex vector bundle 𝑉(𝑆𝑃(𝑛)) → 𝒜(𝑛).

Definition
Let 𝑑 = 𝑝1 ⋯𝑝𝑘 be the prime factorisation of 𝑑. The maximal anti-diagonal Δ

−
𝑑 of

𝒜(𝑛)𝑑 is the subspace consisting of products

[𝑓] = [(𝑣1, 𝑝1) ∘⋯ ∘ (𝑣𝑘, 𝑝𝑘)], where 𝑣𝑖 ⟂ 𝑣𝑗 for all 𝑖 ≠ 𝑗.

This is the subspace where the atomic split polynomials are maximally
commutative.

Why anti-diagonals?
Observe that normal maps 𝑓𝑑 ∶ 𝛾 ⊕⋯ ⊕ 𝛾 → 𝛾⊗𝑑1 ⊕⋯ ⊕ 𝛾⊗𝑑𝑘 on each fibre belong
to the (possibly not maximal) anti-diagonal.
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Vector bundles over the anti-diagonal

Assume that 𝑑 = 𝑝1 ⋯𝑝𝑘 is a product of distinct primes.

Then the maximal anti-diagonal is diffeomorphic to the flag manifold 𝐹𝑙𝑘(𝐂
𝑛+1),

consisting of 𝑘 orthogonal lines labelled by the primes 𝑝1, … , 𝑝𝑘. So there are 𝑘
tautological line bundles

𝜅𝑝𝑖 = { ([⋯ ∘ (𝑣𝑖, 𝑝𝑖) ∘⋯ ], 𝑤) | 𝑤 ∈ 𝐂𝑣𝑖 }
←→ Δ−𝑑,

where at each point the fibre is the line corresponding to the prime 𝑝𝑖.

Theorem B (F. ’24)
The vector bundle 𝑉(𝑆𝑃(𝑛)) → 𝒜(𝑛) restricted to the maximal anti-diagonal is

𝜅
⊗𝑝1
𝑝1 ⊕⋯ ⊕ 𝜅

⊗𝑝𝑘
𝑝𝑘 ⊕ (𝜅𝑝1 ⊕⋯ ⊕ 𝜅𝑝𝑘)

⟂ ←→ Δ−𝑑 ≈ 𝐹𝑙𝑘(𝐂
𝑛+1)
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A little bit of cohomology



Cohomology of𝒜𝑝2, 𝑝 prime

In my thesis, I have also calculated the cohomology groups of the 𝒜-space in
various degrees.

Theorem C (F. ’24)
The integral cohomology groups of 𝒜𝑝2 are given by

𝐻𝑖(𝒜𝑝2; 𝐙) ≈ {
𝐙⊕(𝑗+1) ⊕ 𝐙⊕𝑗2 , for 𝑖 = 4𝑗,

𝐙⊕(𝑗+1) ⊕ 𝐙⊕(𝑗+1)2 , for 𝑖 = 4𝑗 + 2,
0, otherwise.
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Cohomology of𝒜𝑝𝑞, 𝑝 and 𝑞 distinct primes

Theorem D (F. ’24)
The integral cohomology groups of 𝒜𝑝𝑞 in dimensions 0, 1, and 2 are given by

𝐻𝑖(𝒜𝑝𝑞; 𝐙) ≈ {
𝐙, for 𝑖 = 0,
𝐙, for 𝑖 = 1,
𝐙(𝑝−1,𝑞−1), for 𝑖 = 2,

where (𝑝 − 1, 𝑞 − 1) denotes the greatest common divisor of 𝑝 − 1 and 𝑞 − 1.

The rational cohomology groups of 𝒜𝑝𝑞 are given by

𝐻𝑖(𝒜𝑝𝑞; 𝐐) ≈ {
𝐐, for 𝑖 = 0, 1,
𝐐⊕(𝑗−1), for 𝑖 = 2𝑗, where 𝑗 ⩾ 1,
0, otherwise.
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